Video Electronics Standards Association

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
VESA-Logo

Die Video Electronics Standards Association (VESA) ist eine Organisation, in der sich rund 200+ Mitgliedsfirmen (Stand: Juli 2013[1]) zusammengeschlossen haben, um damit einheitliche Spezifikationen von Videostandards speziell für den Bereich der Computergrafik zu erstellen. Sie zählt zu einer der größten industriellen Standardisierungsorganisationen.

Bekannt wurde die VESA vor allem durch Spezifikationen für die VESA BIOS Extension und durch Definition des VESA Local Bus (VLB) für IBM-PC-kompatible Rechner. Mit DPMS, Video Input Port (VIP) und DFP-Techniken ergaben sich weitere Betätigungsfelder für die VESA. Weiterhin hat die VESA durch Definition der sogenannten VESA-Modi für die Timings der Bildschirm-Steuersignale und der damit verbundenen General Timing Formula (GTF) auch heute noch große Bedeutung für die Standardisierung von Teilen der Computertechnik. Des Weiteren wurde der DDC (Display Data Channel)-Standard und die daran geknüpfte Extended Display Identification Data (EDID)-Spezifikation von VESA festgeschrieben. Bei der Standardisierung der DVI-D- und DVI-I-Verbindungstechniken für digitale Videodaten wurde ebenso mitgewirkt. Auch neuere Standards wie HDTV werden absehbar von der VESA mitbeeinflusst. Neueste Vorschläge zur Standardisierung vom August 2005 propagieren den DisplayPort, der auf PCI-Express-Techniken aufbaut. Ähnlich wie bei HDMI können hochauflösende Video- und Audiosignale verschlüsselt und unkomprimiert über ein einziges Kabel zu einem Bildschirm übertragen werden.

Die VESA zeigt unter anderem Präsenz durch Vorträge auf der jährlich stattfindenden SIGGRAPH Messe.

Displaytimings der VESA[Bearbeiten]

In den 1980er Jahren existierten verschiedene Computertypen und Grafikstandards, von denen nahezu jeder einen kompatiblen Bildschirm, oder zumindest einen passenden Adapter, erforderte. VESA kam auf die Idee, das Interface zwischen Computer und Bildschirm zu standardisieren; so konnten sich die beiden Geräte unabhängig voneinander entwickeln. Damit sich der Computer, der das Videosignal sendet, und der Bildschirm, der das Videosignal empfängt, verstehen, müssen beide Seiten dasselbe Signal verwenden, das denselben Regeln für den zeitlichen Ablauf (Timing) folgt.

Display Monitor Timing (DMT)[Bearbeiten]

Im ersten Ansatz eines VESA-Standards wurde eine Liste von Bildauflösungen, Farbtiefen und Bildwiederholfrequenzen erstellt, die die jeweils dazugehörigen Zeitwerte – das Timing – enthält. Trotz einer neueren Methode einer Formel zur dynamischen Berechnung des Timings wird diese Display Monitor Timing genannte Liste von der VESA immer noch gepflegt. Ende 2008 war die neueste DMT-Ausgabe „Revision 11“ vom Mai 2007.

General Timing Formula (GTF)[Bearbeiten]

Die Bildschirmindustrie entwickelte sich rasant. Statt Bildschirme mit fixen Timings zu bauen, wurden die Ansteuerungen der Röhrenbildschirme flexibler und ließen eine Vielzahl von verschiedenen Auflösungen zu. Statt alle möglichen Auflösungen und Timings in die DMT-Tabelle aufzunehmen, begann VESA 1996 eine Formel zu vermarkten, die es erlaubte, aus einer gewünschten Auflösung und Bildwiederholfrequenz die benötigten Timings auszurechnen.

Die General Timing Formula trug den damals bekannten technologischen Rahmenbedingungen Rechnung. Z. B. muss die horizontale Auflösung durch acht teilbar sein, der horizontale Synchronisationspuls sollte acht Prozent der Bildschirmzeilenlänge betragen.

Die GTF-Spezifikation ist nicht frei erhältlich. Ein Open-Source-Programm ist jedoch in der Lage, die Timings nach GTF zu berechnen.[2]

Coordinated Video Timings (CVT)[Bearbeiten]

Die Bildschirmindustrie schritt weiter voran. Die Röhrenbildschirme wurden zunehmend durch LCD- oder Plasmabildschirme abgelöst. Die Röhrenbildschirme benötigten am Schluss des Bildes eine bestimmte Zeit, bis der Elektronenstrahl von unten rechts nach oben links gewandert war. Diese Austastlücke genannte Pause ist bei LCD-Schirmen technisch überflüssig und kann mit Reduced blanking eingespart werden.

Die Informationstechnik und die Unterhaltungstechnik verschmolzen immer mehr: Durch die Digitalisierung der Fernsehapparate wurden auch die dort verwendeten Bildauflösungen (720p, 1080i, …) und Seitenverhältnisse (z. B. 16:9 statt der früher in der IT-Welt verbreiteten 4:3) für die IT-Industrie interessant. Deshalb entschloss sich die VESA 2003, die GTF den neuen Bedingungen anzupassen und entwarf eine auf GTF basierende, verfeinerte CVT-Formel.

CVT kodiert das Seitenverhältnis ins Signal (die Länge des vertikalen Synchronistionspulses gibt das Seitenverhältnis an, z. B. 4 Zeilen → 4:3, 5 Zeilen → 16:9…), und ob das Videosignal „normale“ Röhrenaustastzeiten verwendet oder verkürzte LCD-Austastzeiten, wird über die Polarität der Syncpulse geregelt (H-/V+ → normal, H+/V- → verkürzt)

Die CVT-Spezifikation ist nicht frei erhältlich. Ein Open-Source-Programm ist jedoch in der Lage, die Video-Timings nach CVT (und GTF) zu berechnen.[3]

Zukunft[Bearbeiten]

Selbst CVT hat immer noch die Beschränkung, dass die horizontale Auflösung durch acht teilbar sein muss. Dies ließe sich momentan so umgehen, dass diese neuen Auflösungen in die DMT-Tabelle aufgenommen werden. Wenn mit dem Signal nicht nur Video-, sondern auch Audiosignale übertragen werden sollen, vertragen sich die berechneten Videotimings nicht optimal mit den in der Audiowelt verwendeten Timings. Neueste Entwicklungen tragen dem Rechnung, indem sie auch die neuen Anforderungen und Rahmenbedingungen miteinbeziehen.

Befestigungen von Flachbildschirmen[Bearbeiten]

Befestigungssystem eines 22" LCD-TV nach VESA MIS-D 100 C

Das VESA Flat Display Mounting Interface (FDMI) ist ein Standard für Befestigungen von Flachbildschirmen an Wänden, Decken, Tischen oder Fahrzeugen, der je nach Abmessung und Gewicht des Bildschirms mindestens 4 Gewinde für Schrauben vorsieht:[4] Bis Oktober 2002 wurde diese Standardisierung unter der Bezeichnung Flat Panel Monitor Physical Mounting Interface (FPMPMI) geführt.[5]

Die Varianten des FDMI sind vielfältig und beginnen bei 4 Gewinden mit Abständen von 50 und 20 mm in 5 verschiedenen Anordnungen.[5] Zur Benennung in Datenblättern ist eine Syntax vorgesehen, die mit VESA beginnt, gefolgt von MIS für Mounting Interface Standard, dem zutreffenden Teil des Standards und den zutreffenden Optionen dieses Teils. Dabei werden folgende Vorgaben hinsichtlich der Bildschirmdiagonale und der maximalen Gesamtmasse den einzelnen Teilen zugeordnet:[5]

  • Teil A: Offen, zukünftige Entwicklungen;
  • Teil B: 10,2 bis 20,2 cm Bildschirmdiagonale; max. 2 kg
  • Teil C: 20,3 bis 30,4 cm Bildschirmdiagonale; max. 4,5 kg
  • Teil D: 30,5 bis 58,3 cm Bildschirmdiagonale; max. 14 kg
  • Teil E: 58,4 bis 78,6 cm Bildschirmdiagonale; max. 22,7 kg
  • Teil F: 78,7 bis 228,6 cm Bildschirmdiagonale; max. 113,6 kg
Beispiele

VESA MIS-D 100 C

Teil D des Standards, 4 Gewinde in quadratischer Anordnung 100 × 100 mm im Zentrum der Bildschirmrückseite.

VESA MIS-D 100 L/R

Teil D des Standards, 4 Gewinde in rechteckiger Anordnung 100 × 50 mm am linken und rechten Rand der Bildschirmrückseite.

VESA MIS-E 200 C

Teil E des Standards, 6 Gewinde in rechteckiger Anordnung 100 × 200 mm im Zentrum der Bildschirmrückseite.

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. Mitgliederanzahl auf VESA.org. Abgerufen am 22. Juli 2013.
  2. Programm zur Berechnung der Video-Timings nach GTF
  3. Programm zur Berechnung der Video-Timings nach CVT und GFT
  4. VESA Flat Display Mounting Interface (FDMI) Overview (PDF; 65 KB) VESA. Abgerufen am 14. April 2011.
  5. a b c VESA Flat Display Mounting Interface Standard (PDF; 2,06 MB) VESA. 16. Januar 2006. Abgerufen am 14. April 2011.