Videorekorder

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Frontansicht eines VHS-Videorekorder
Rückansicht eines geöffneten VHS-Videorekorders
Ein VR 2000, ein früher Rekorder im Format Quadruplex

Videorekorder (abgekürzt VCR von englisch Video Cassette Recorder) sind Geräte zur Aufzeichnung und Wiedergabe von Audio- und Videosignalen (in der Regel Fernsehbildern). Anfangs waren damit stets Geräte mit magnetisierbaren Bändern (MAZ, Videokassetten) gemeint, inzwischen wird die Abkürzung im Deutschen (anders als im Englischen) auch zunehmend auf Geräte angewandt, die Datenscheiben (DVD) oder Festplatten (HDD) nutzen.

Technik[Bearbeiten]

Mechanik[Bearbeiten]

Mechanische Aufzeichnung[Bearbeiten]

Bereits in der Anfangszeit des Fernsehens versuchten Bastler, die Sendungen aufzuzeichnen. Das gelang einigen mit Hilfe von modifizierten Schallplatten. Die geringe Bandbreite, die das damalige mechanische Fernsehen benötigte, konnte so aufgezeichnet werden. Einige Aufnahmen verwendeten sogar noch schmalbandigere Formate, wie beispielsweise 30 Zeilen bei 4 Bildern pro Sekunde.

In den 1970ern startete die Firma Telefunken einen neuen Versuch der mechanischen Aufzeichnung, siehe Bildplatte.

Magnetische Aufzeichnung[Bearbeiten]

Mit dem Aufkommen von Drahtrekordern und Tonbandgeräten wurden auch Versuche unternommen, Fernsehbilder auf Magnetbändern aufzuzeichnen.

Lineare Aufzeichnung
Der Versuch der British Broadcasting Corporation nannte sich VERA und benutzte zwei Spuren, um ein 405-Zeilen-Fernsehsignal aufzuzeichnen. Das Frequenzspektrum wurde in zwei Teile aufgeteilt, die auf beide Spuren verteilt wurden. Gleichzeitig wurden in den USA Versuche unternommen, das Frequenzspektrum auf zwölf Spuren zu verteilen.
Die Probleme lagen darin, dass die hohe Bandbreite zu sehr kleinen „Bandwellenlängen“ führte. Es mussten sehr hohe Bandgeschwindigkeiten erreicht werden, um diese Wellenlängen lang genug zu machen. Die Verteilung des Signals auf mehrere Spuren löste zwar dieses Problem teilweise, jedoch traten neue Probleme elektronischer Art auf. Es erwies sich als schwierig, die Signale aufzutrennen und später wieder zusammenzufügen.
Festplattenrekorder
Eine Unterart der linearen Aufzeichnung sind Festplattenrekorder. Hier wird das Signal von einem stehenden Kopf auf eine runde, sich drehende Scheibe aufgezeichnet. In der Regel dreht sich die Scheibe einmal pro Bild oder einmal pro Halbbild. Der Kopf kann meistens auch noch schrittweise nach innen oder außen bewegt werden, um mehrere Kreise (Spuren) mit unabhängigen Bildern aufzuzeichnen. Die Vorteile dieser Technik liegen im schnellen Zugriff auf jedes beliebige Bild der Platte. Mehrere Platten können diesen Zugriff noch beschleunigen.
Festplattenrekorder konnten zwischen 30 Sekunden und etwa einer halben Stunde aufzeichnen. Kleinere Systeme wurden für die Zeitlupe bei Sportübertragungen verwendet. Größere Systeme konnten in den 1970ern sogar typische Offlineschnittaufgaben übernehmen.
Im Fotobereich wurde diese Technik bei Still-Video-Kameras verwendet. Dort wurde pro Umdrehung ein Bild auf eine 3-Zoll-Diskette aufgezeichnet. Laserdiscs verwenden ähnliche Verfahren.
Moderne Festplattenrekorder zeichnen die Daten digital auf normale Computerfestplatten auf. Sie sind eher mit Computern zu vergleichen, da die erforderliche Datenkompression und -dekompression hohe Rechenleistung erfordert.
Andere Aufzeichnungsbewegungen
Um das Problem der hohen Bandgeschwindigkeit zu lösen, kam man auf die Idee, nicht nur das Band, sondern auch den Aufzeichnungskopf zu bewegen. Dadurch erhöhte sich die relative Geschwindigkeit von Band zu Kopf erheblich und die „Bandwellenlängen“ wurden ausreichend groß, um die hohen vorkommenden Frequenzen aufzeichnen zu können.
Arcuate Scan
Eines der ersten Verfahren wurde von der Firma Ampex Anfang der 1950er-Jahre vorgestellt. Einige experimentelle Rekorder hatten die Köpfe auf der Deckfläche eines sich drehenden Zylinders montiert. Das Band wurde nun über die Fläche mit den Köpfen geführt, so dass auf dem Band kreisförmige Spuren entstanden. Dieses Verfahren funktionierte nicht sehr gut, da es schwierig war, einen sicheren Bandkontakt herzustellen.
Transversal Scan
Ein weiteres Verfahren montierte die Köpfe auf der Mantelfläche eines Zylinders, dessen Rotationsachse in Bandrichtung zeigte. Das Band wurde dann gebogen und an diesem Zylinder vorbeigeführt. Dieses Verfahren funktionierte recht gut, und wurde beim Quadruplex-Format eingesetzt. Die Spuren standen hier fast rechtwinklig zum Band. Pro Spur wurde immer etwa ein Dutzend Bildzeilen aufgezeichnet. Das führt bei Störungen zu regelmäßigen Störbändern oder Störstreifen.
Helical Scan (Schrägspuraufzeichnung)
Dieses Verfahren ist heute bei Videorekordern am gebräuchlichsten. Im Gegensatz zu Transversal Scan steht die Rotationsachse des Zylinders (Kopftrommel) quer zur Bandrichtung. Die sich daraus ergebenden Spuren sind nur wenig gegen die Bandrichtung geneigt. Das ermöglicht längere Spuren, die Halb- oder sogar Vollbilder enthalten, so dass die Kopfumschaltung unsichtbar in die vertikale Austastlücke des Bildsignals verlegt werden kann. Dadurch wurden auch Bildsuchlauf und Zeitlupe möglich. Häufig sind die auf der Kopftrommel angebrachten Köpfe gegeneinander etwas verdreht. Das führt zu weniger Übersprechen zwischen zwei benachbarten Spuren.

Elektronik[Bearbeiten]

Modulationsverfahren[Bearbeiten]

Magnetische Aufzeichnungen sind häufig sehr frequenzunlinear (nicht konstant). Hohe Frequenzen werden stärker wiedergegeben als niedrige. Das muss durch geeignete elektronische Schaltungen ausgeglichen werden. Natürlich funktioniert das nur bis zu einem bestimmten Verhältnis zwischen höchster und niedrigster Frequenz. Bei Tonbändern liegt dieses Verhältnis bei etwa 1:1000. Im Videobereich müssen allerdings Frequenzen von wenigen Hertz bis hin zu mehreren Megahertz übertragen werden. Das entspricht einem Verhältnis von etwa 1:10.000.000, zu viel für die direkte Aufzeichnung.

Amplitudenmodulation
Frühe Rekorder versuchten, dieses Problem mit Hilfe der Amplitudenmodulation (Aufzeichnung der Signale über eine Trägerfrequenz) zu lösen. Durch den immer noch schlechten Kontakt zwischen den Köpfen und dem Band schwankte auch die Signalstärke, was sich direkt in einem veränderten Kontrast niederschlug. Eine automatische Nachregelung war sehr schwierig.
Frequenzmodulation
Charles Anderson kam etwa 1954 auf die Idee, das Signal so aufzuzeichnen, dass der Träger frequenzmoduliert wird. Dieses Modulationsverfahren ist sehr unempfindlich gegenüber wechselnden Signalpegeln und wird auch heute noch verwendet.

Farbaufzeichnung[Bearbeiten]

Farbfernsehen war noch neu, als die ersten Videorekorder auf den Markt kamen. Deshalb wurde die Farbe erst einmal ignoriert.

Direktfarbe
Später nutzte man die bereits vorhandene hohe Bandbreite der Videorekorder aus, um das gesamte Fernsehsignal inklusive Farbsignal aufzuzeichnen. Das Problem dabei war die Wiedergabe. Mechanische Toleranzen ließen die Köpfe etwas ungleichmäßig gleiten, so dass eine „Ruckelbewegung“ entstand. Diese führte zu einer Phasenverschiebung der hochfrequenten Anteile. Beim Schwarzweiß-Fernsehen war sie kaum wahrnehmbar, führte jedoch zu deutlichen Farbtonfehlern und in ungünstigen Fällen zum Totalausfall des Farbträgers.
Phasenverschiebung bei Direktfarbe, selbst eine kleine Verschiebung von 50 ns ruft eine große Phasenverschiebung beim Farbträger hervor. Die Farben in diesem Beispiel wären stark verfälscht
Deshalb wurden so genannte „Timebase Correctors“ eingebaut. Das waren zunächst Schaltungen aus Kapazitätsdioden und Spulen, die das Signal in einem kleinen Bereich zeitlich variabel verzögern konnten. Später wurde dieses Verfahren durch eine Reihe von Verzögerungsleitungen ergänzt, die je nach gewünschter Verzögerung an- oder ausgeschaltet wurden. In den 1970er Jahren wurde dieses analoge Verfahren durch digitale Speicher ersetzt.
Direktfarbaufzeichnung war bis vor kurzem im professionellen Umfeld üblich und findet sich auch heute noch in Laserdiscs.
Herabgesetzter Farbunterträger (Colour Under)
Frequenzsprektrum eines Signales mit herabgesetzen Farbunterträger. Dieses Signal gelangt bei der Aufzeichnung an den Videokopf Die Frequenz nimmt auf der x-Achse zu. Der rote Bereich ist der Farbbereich. Häufig ist das einfach der in seiner Frequenz nach unten verschobene Farbunterträger. Der graue Bereich ist der Helligkeitsbereich. Dieser ist bei (fast) allen Systemen frequenzmoduliert.
Da Direktfarbe sehr hochwertige mechanische Bauteile und einen (damals) teureren Timebase Corrector benötigte, suchte man nach Wegen, Farbe billiger zu realisieren. Eine einfache Möglichkeit war es, den Farbunterträger in seiner Frequenz herabzusetzen (hier rot). Typischerweise liegt seine Frequenz dann bei:
Er wird direkt auf das Band aufgezeichnet, ohne nochmals moduliert zu werden. Durch die niedrige Frequenz werden Störungen aus dem Helligkeitssignal, das weiterhin frequenzmoduliert wird, vermieden.
Jitter bei einem herabgesetzen Farbunterträger. Wie oben beträgt die zeitliche Verschiebung 50ns. Durch die niedrigere Frequenz ist jedoch der Phasenfehler geringer, die Farbart bleibt somit weitgehend erhalten
Allerdings neigen solche niedrigen Frequenzen zum Übersprechen, weshalb in sehr dicht gepackten Formaten wie VHS stets eine Rauschreduktion integriert ist, die das Farbrauschen minimieren soll. Diese führt bei einigen Geräten zu einem „Ausbluten“ der Farben.
Einige Formate (z. B. S-VHS) verwenden spezielle zusätzliche Köpfe für dieses Farbsignal.
Praktisch alle analogen Farb-Heimvideorekordersysteme benutzen diese Technik.
Sequenzielle Farbaufzeichnung
In einigen professionellen Formaten wie Betacam/ Betacam SP oder M- und M-II-Format werden die beiden Farbdifferenzsignale nacheinander aufgezeichnet. Dazu werden beide Signale in einen CCD-Speicher geschoben und dann doppelt so schnell wieder ausgelesen und hintereinander auf eine Spur zeitlich komprimiert aufgezeichnet. Dadurch erreicht man neben anderen positiven Effekten eine höhere Bildqualität ohne gegenseitige Störungen durch Farb- und Helligkeitssignal.
Magnetische Aufzeichnungsgeräte (MAZ), Typ (Betacam SP und D9)

Tonaufzeichnung[Bearbeiten]

Längsspurton
Ursprünglich wurde der Ton auf getrennten linearen Spuren am Rand des Bandes aufgezeichnet, ähnlich wie bei Tonbändern. Wegen der im Vergleich zu Tonbandgeräten meist geringeren linearen Bandgeschwindigkeit in Videorekordern setzt das jedoch der Tonqualität Grenzen. Bis in die 1980er wurde jedoch selbst in professionellen Rekordern ausschließlich dieses Verfahren verwendet, da hier die Bandgeschwindigkeit höher liegt. Der Vorteil liegt besonders darin, dass jede einzelne Spur getrennt nachvertont werden kann. In der Regel werden eine bis drei Längsspuren für den Ton verwendet.
Schrägspur-(Hi-Fi-)Ton
Später zeichnete man den Ton frequenzmoduliert auf mehreren Frequenzen zusätzlich zu den Bildsignalen in der Schrägspur auf, meist mit speziellen „Hi-Fi“-Köpfen mit einem größeren Kopfspalt zum Beispiel 0,9 µm gegenüber den Videoköpfen mit 0,3 µm (bei VHS).
Aufgezeichnet wird in der Regel auf einem FM-modulierten Träger pro Tonkanal. Bei VHS 1,4 MHz für den linken und 1,8 MHz für den rechten Kanal.
Durch die hohe Band-Kopf-Geschwindigkeit wird der Frequenzgang stark verbessert. Mit diesem Aufzeichnungsverfahren ist allerdings eine Nachvertonung nicht möglich; diese muss auf den zusätzlich vorhandenen Audio-Längsspuren (bei eingeschränkter Qualität) erfolgen.
Videosignal und Stereoton werden auf dieselbe Spur geschrieben, wobei der Stereoton vor dem Videosignal aufgezeichnet wird. Bedingt durch den größeren Kopfspalt des Audiokopfes, wird der Ton tiefer in das Band magnetisiert als das nachfolgende Videosignal. Ein übermäßiges Übersprechen der beiden Signale wird durch die verschiedenen Azimuthwinkel der Köpfe verhindert (zum Beispiel −6° für den Videokopf 1 und +30° für den Audiokopf 1 bei VHS).
Allerdings muss die Kopfumschaltung dann sehr genau arbeiten, da es im Tonsignal im Gegensatz zum Bildsignal keine Austastlücken gibt, in denen man die Umschaltung „verstecken“ könnte. Hi-Fi-VHS-Rekorder zeichnen grundsätzlich neben dem Hi-Fi-Tonsignal auch noch ein lineares Tonsignal auf, damit die Kassetten auch auf VHS-Rekordern ohne Hi-Fi-Fähigkeit abspielbar sind.
In Systemen wie Video 8 ist der Hi-Fi-Ton vorgeschriebener Systembestandteil, da er die Mechanik deutlich vereinfacht. Man spart sich hier die getrennten Audioköpfe außerhalb des Videokopfes. Dadurch wird auch das Laufwerk deutlich kleiner.
Digitaler (PCM-)Ton
In einigen Formaten ist auch digitaler Ton definiert. Dieser wird in der Regel PCM-kodiert auf den Schrägspuren aufgezeichnet.

Timecode-Verfahren[Bearbeiten]

Zum Schneiden von Bändern ist es sinnvoll, jedes Bild individuell mit einer Nummer zu versehen, um es wieder zu finden.

Farbkleckse
Bevor es richtige Timecodes gab, bediente man sich eines sehr einfachen Verfahrens. Der Cutter spielte das Band ab, und machte zum richtigen Zeitpunkt einen Farbklecks auf die Rückseite des Bandes. Später wurde das Band an dieser Stelle geschnitten. Das funktioniert natürlich nur im Direktschnitt und ist recht ungenau.
Längsspurtimecode
Später, mit dem Aufkommen der Digitaltechnik, zeichnete man das Timecodesignal als eine Sequenz von Tönen auf eine der Tonspuren auf. Die Verfahren wurden in der Regel so gestaltet, dass auch ein Lesen in erhöhter Geschwindigkeit möglich ist. Außerdem lässt sich der Timecode nachträglich einfach verändern.
Vertical Interval TimeCode
Man kann den Timecode auch in der vertikalen Austastlücke aufzeichnen; dann ist er auch im Standbildmodus lesbar, und er ist ein Teil des Bildes, wodurch er über alle konventionellen Übertragungsstrecken ohne Zusatzkosten übertragen werden kann.

Digitale Systeme[Bearbeiten]

Digitale Videorekordersysteme verwenden unterschiedliche Verfahren, um Bild- und Tonsignale zu kodieren. Wird das Signal z. B. mit der 4-fachen Farbunterträgerfrequenz im Puls-Code-Modulationsverfahren (PCM) abgetastet, so spricht man vom „Composite“-Verfahren. Häufig wird allerdings das Signal bereits vor der Kodierung in RGB oder die Farbdifferenzsignale aufgeteilt. Danach werden in der Regel auch diese Signale als PCM-Signale weiterverarbeitet.

Ursprünglich wurden die PCM-Signale ohne Datenkompression aufgezeichnet. Das führte zu einer guten Qualität, erforderte jedoch große Aufzeichnungsgeschwindigkeiten und die Handhabung großer Datenmengen. Später wurden Computer derart leistungsfähig, dass eine Datenkompression und -dekompression in Echtzeit möglich wurde. Dadurch wurde es möglich, fast ohne Zugeständnisse an die Qualität die Datenraten und -mengen um den Faktor 1:2 bis 1:100 zu reduzieren, da die redundante Aufzeichnung mehrerer sich wenig unterscheidender Bilder eines Filmes entfällt und einfarbige Flächen nicht mit der vollen Auflösung gespeichert werden müssen.

Auch die digitalen Bandrekordersysteme werden gegenwärtig durch Festplattenrekorder und digitale Audiorekorder mit Festspeicher verdrängt, da die Anschaffungs- und Wartungskosten geringer sind als für Bandgeräte. Die Festplattenaufzeichnung, vor allem aber die Festspeicheraufzeichnung ist überdies durch geringe Zugriffszeiten und geringen Verschleiß gekennzeichnet.

Heimvideorekorder[Bearbeiten]

Heim-Videorekorder im Holzgehäuse um 1973

Die ersten Videorekorder für den Heimgebrauch kamen Anfang der 1960er auf den Markt. Ein Beispiel für ein frühes Gerät war der Loewe Optacord 500, der auf der Funkausstellung 1961 der Öffentlichkeit vorgestellt wurde. Zu den prominentesten Besitzern dieser frühen, damals für den Heimbereich noch so gut wie unbekannten Heimvideorekorder, gehörten ab etwa 1965 die Musiker John Lennon und Paul McCartney, die ihre Geräte für noch nicht in Serie gegangene Prototypen einer offiziell noch in der Entwicklung befindlichen Technik hielten.

In den 1970er Jahren wurden in Europa die Formate VCR (mit den Ablegern VCR Longplay und SVR) sowie Video 2000 von Philips und Grundig entwickelt. Diese europäischen Formate konnten sich jedoch in den USA und Japan nur schwer durchsetzen.

Die europäischen Entwicklungen wurden bald von zwei japanischen Systemen bedrängt: Betamax von Sony und VHS von JVC. Der erste Rekorder mit dem VHS-Aufzeichnungsformat war der HR-3300 von JVC, der Herbst 1977 vorgestellt wurde.

Betamax bot zwar gegenüber VHS eine minimal bessere Bildqualität und bessere Bandlaufeigenschaften, scheiterte aber daran, dass der Lizenzgeber Sony von anderen Herstellern Abgaben für die Produktion von Betamax-Geräten nahm. Bis Ende der 1980er Jahre hatte VHS vor allem aufgrund einer geschickteren Lizenzierungspolitik die konkurrierenden Systeme vollständig aus dem Einzelkundengeschäft verdrängt. Dieser letztlich von VHS gewonnene Kampf um Marktanteile wurde als Formatkrieg bekannt. Er wiederholte sich in ähnlicher Form ab etwa 2005 als Wettbewerb zwischen den Formaten HD-DVD, VMD und Blu-ray-Disc, die alle als Nachfolger der DVD entwickelt wurden und welcher von Blu-ray gewonnen wurde.

Weitere, auch professionelle Formate, finden sich im Artikel Videoformat.

In der Bundesrepublik Deutschland wurden 1979 etwa 270 000 Geräte verkauft. 1981 waren es bereits rund 750 000 und 1983 1,4 Millionen. 1985 stand in etwa sieben Millionen Wohnungen ein Videogerät und damit in jedem vierten Haushalt.[1]

Die Einführung der DVD als Wiedergabe- und seit dem Jahr 2000 zunehmend auch als Aufnahmemedium für Privatanwender drängt bandbasierte Videogeräte zunehmend zurück. Da aber noch viele Nutzer ihre analogen Aufnahmen weiternutzen möchten, gibt es nach wie vor VHS-Rekorder zu kaufen. Manche dieser Geräte vereinen auch die verschiedenen Aufnahmetechniken (meist ein VHS-Laufwerk und ein DVD-Rekorder in einem Gerät) und bieten somit eine unkomplizierte Möglichkeit, von einem Format in ein anderes zu kopieren.

Beschreibung eines VHS-Laufwerks[Bearbeiten]

Das Videorekorderlaufwerk (im Bild ein VHS-Laufwerk) hat die Aufgabe, die Videokassette aufzunehmen, sie einzuziehen, das Band einzufädeln und zu transportieren. Dabei ist hohe Präzision notwendig. Das betrifft insbesondere die Spurlage des Bandes (Tracking) sowie den Bandtransport durch den sogenannten Bandservo (Servomotor, der die Capstanwelle antreibt) und den Kopftrommelmotor (Kopftrommelservo), der die Kopfscheibe mit den Videoköpfen antreibt. Die Drehzahlen aller Servomotoren werden durch einen Mikrocontroller gesteuert.

Videorekorderlaufwerk von oben


Abbildung Videorekorderlaufwerk von oben:

  • 1: Hier befindet sich u.a. der Kopfverstärker, der die von den Video- und, wenn vorhanden, Audioköpfen kommenden FM-Signale verstärkt.
  • 2: Vorn sieht man die Kopfscheibe mit den Video- und im vorliegenden Fall auch Audioköpfen. Die Kopfscheibe ist drehbar und wird mit einem auf der gleichen Welle befindlichen elektronisch kommutierten Außen- oder Scheibenläufermotor angetrieben. In der Kopfscheibe ist für jeden Kopf ein aus konzentrischen Ferritkernen bestehender Rotationstransformator enthalten; die Informationen werden induktiv über einen Luftspalt übertragen.
Mögliche Anzahl an Köpfen auf der Kopfscheibe:
  • 2 Köpfe: zwei Videoköpfe für Standardplay oder kombiniert für Standardplay und Longplay mit Mono-Längsspur-Ton
  • 4 Köpfe: zwei Videoköpfe für Standardplay oder kombiniert für Standardplay und Longplay und zwei rotierende Audioköpfe für Hi-Fi-Stereo-Ton. Bei Nachvertonung diese nur in Mono
  • 6 Köpfe: vier Videoköpfe für Standard- und Longplay, sowie besseres Standbild und zwei Audioköpfe für Hi-Fi-Stereo; stehender Löschkopf, daher Nachvertonung nur in Mono.
  • 7 Köpfe: vier Videoköpfe für Standard- und Longplay, zwei Audioköpfe für Hi-Fi-Stereo und einen rotierenden Löschkopf, besser für Videoschnitt plus „stehenden“ Löschkopf, Nachvertonung in Mono
  • 3: Der Schachtmotor hat die Aufgabe, die Kassette einzuziehen und das Band (mittels diverser „Finger“ und Zusatzmechanik) aus der Kassette herauszuholen, und um die Rotationstrommel zu schlingen. Zusätzlich übernimmt er die Steuerung zwischen den Betriebsarten des Videorekorders (Play, schneller Vor- und Rücklauf usw.). Dazu dient der sogenannte Mod-Schalter.
  • 4: Der Löschkopf löscht alle Informationen auf dem Band, wenn neu aufgezeichnet wird.
  • 5: Die Andruckrolle transportiert das Band wie auch bei Tonbandgeräten, indem sie es gegen eine Welle drückt.
  • 6: Der Tonkopf zeichnet den Mono-Ton auf und spielt ihn ab. Eingebaut ist auch der Synchronisationskopf (auch CTL-Kopf genannt). Er wird dazu benutzt, um Synchronimpulse aufzuzeichnen und damit bei der Wiedergabe den momentanen Drehwinkel des Kopfrades bezüglich des Bandvorschubs zu steuern. Neben dem Ton- und CTL-Kopf befindet sich der Löschkopf für die Mono-Tonspur (schwarz), der bei Nachvertonung und Videoschnitt benötigt wird.
  • 7: Der sog. Capstan (Capstanwelle, bei Tonbandgeräten auch Tonwelle genannt) wird von einem Bandservo (hier nicht zu sehen) angetrieben. Er transportiert das Band. Nach Einfädeln des Bandes drückt die Andruckrolle das Band gegen den Capstan, sodass er das Band antreiben kann.
  • 8: IR-Sensor zur Erkennung, ob eine Kassette eingelegt ist. 18 ist der dazugehörige Sender.
  • 9 und 10: Die Umlenkrollen legen das Band um die Kopftrommel. Sie sind höhenverstellbar, um das Tracking einzustellen. Das Band wird so um die Kopftrommel gelegt, dass es etwa den halben Trommelumfang bedeckt. Von oben verläuft das Band in der Form eines 'M', deshalb wird das Verfahren auch M-Loading genannt.
  • 11: Der Abwickeldorn nimmt eine Bandspule der Videokassette auf. Während des Rückspulens wird er vom Bandservo angetrieben.
  • 12: Der Aufwickeldorn nimmt die zweite Bandspule der Videokassette auf. Während des Abspielens des Bandes und während des Vorlaufs wird auch dieser Dorn vom Bandservo (Capstanmotor) angetrieben.
  • 13: Führungsrillen des Kassettenschachtes.
  • 14: Ein Führungsbolzen des Kassettenschachtes.
  • 15: Diese Plastiknase entriegelt die Kassettenklappe, die das Band schützt.
  • 16: Dieser Hebel drückt die 15 nach vorne zur Entriegelung der Kassettenklappe beim Einlegen der Kassette. Wenn die Kassette nach unten fährt, öffnet dieser Hebel die Kassettenklappe.
  • 17: Der Kassettenschacht nimmt die Kassette auf.
  • 18: IR-Sensor zur Erkennung, ob eine Kassette eingelegt ist. Er ist auf einem Plastikstift montiert. Dieser Plastikstift entriegelt die Bandspulen der Videokassette.
  • 19: Je nach Drehrichtung des Bandservos schaltet dieser Hebel zwischen Auf- oder Abwickeldorn um.
Videorekorderlaufwerk von unten


Abbildung Videorekorderlaufwerk von unten:

  • 1: Dieser Schalter startet und stoppt den Schachtmotor, wenn eine Kassette eingelegt oder ausgeworfen wird.
  • 2: Getriebe für den Kassettenschacht, es ist gleichartig auf der anderen Seite des Kassettenschachtes vorhanden.
  • 3: Sensor zur Drehzahlmessung des Bandservos.
  • 4: Rotor des Bandservos (Capstanmotor). Unter diesem Rotor befinden sich sternförmig angeordnete Spulen. Der Motor ist elektronisch kommutiert und drehzahlgeregelt. Über einen Riemen ist der Servo mit einem Umschalthebel verbunden, der den Antrieb auf den Auf- bzw. Abwickeldorn umschaltet.
  • 5: Der Kopftrommelservo ist ebenso wie der Bandservo ein elektronisch kommutierter Außenläufermotor. Er treibt die Kopfscheibe an.
  • 6: Getriebe für Umlenkrollen und Bolzen, die das Band um die Kopftrommel legen.
  • 7: Ein Bolzen und Umlenkrolle von unten.
  • 8: Bremshebel für den Bandservo. Dieser bremst die Capstanwelle und die daran gekoppelte Schwungmasse, damit bei Wiedergabe- oder Suchvorlaufabbruch keine Bandschlaufen entstehen.

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]

 Commons: Videorekorder – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten]

  1. Jürgen Kniep: Keine Jugendfreigabe! Filmzensur in Westdeutschland, 1949 - 1990, Göttingen 2010, ISBN 3-8353-0638-3, S. 288