Wasserkühlung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Seiten Wasserkühler und Wasserkühlung überschneiden sich thematisch. Hilf mit, die Artikel besser voneinander abzugrenzen oder zusammenzuführen (→ Anleitung). Beteilige dich dazu an der betreffenden Redundanzdiskussion. Bitte entferne diesen Baustein erst nach vollständiger Abarbeitung der Redundanz und vergiss nicht, den betreffenden Eintrag auf der Redundanzdiskussionsseite mit {{Erledigt|1=~~~~}} zu markieren. TETRIS L 22:29, 27. Sep. 2013 (CEST)
Beispiel einer einfachen Wasserkühlung

Als Wasserkühlung (allgemeiner: Flüssigkeitskühlung) wird ein Kühlsystem bezeichnet, bei dem das primär wärmeabführende Kühlmittel Wasser ist. Eine Wasserkühlung kann beispielsweise für die Kühlung eines Motors, eines Kraftwerks, eines Stromrichters, eines Computers (PC-Wasserkühlung) etc. mittels stehendem Wasser oder eines anliegenden oder durchlaufenden Wasserkreislaufes, angewandt werden.

Wasserkühlung in Kraftwerken[Bearbeiten]

Kühlwassereinlauf eines Kernkraftwerks
Wasserkühlung eines Hochofens.

Für die Wasserkühlung in modernen kalorischen Kraftwerken sind häufig zwei getrennte Kühlkreisläufe vorhanden. Dies sind der meist offene Hauptkühlkreislauf und der in der Regel geschlossene Nebenkühlwasserkreislauf. Nach der Turbine wird der Dampf im Kondensator mit Hilfe von Wasser, welches aus einem nahegelegenen Gewässer - Fluss, See oder Meer, seltener Grundwasser - entnommen wird, wieder zur Kondensation gebracht. Bei der Durchlaufkühlung ist der Hauptkühlkreislauf ebenfalls geschlossen. Ist das entnommene Wasser bei diesem System nach der Kühlung für eine Einleitung in das Gewässer zu warm, so wird es in einem Kühlturm auf die nötige Temperatur herabgekühlt. Bei den meist vorhandenen Zirkulationkreisläufen wird die Rückkühlung fast immer über derartige Kühltürme durchgeführt. Die Rückkühlung der aus Korrosionsschutzgründen geschlossenen Nebenkühlwasserkreisläufe erfolgt über Wärmetauscher, die an das Hauptkühlwassersystem angeschlossen sind. Im Gegensatz zum Hauptkühlwassersystem, dessen Zusatzwässer höchstens entkarbonisiert werden, ist das Wasser im Nebenkühlwassersystem aus Korrosionsgründen häufig vollentsalzt.

Manche Reaktortypen, wie der Druckwasserreaktor, besitzen zwei geschlossene Kühlkreisläufe. Diese Konstruktion hat den Vorteil, dass im Bereich der Turbine im Regelfall keine radioaktiven Substanzen auftreten. Kühlwasser, das in einem Kernreaktor verwendet wird, muss frei von neutronenabsorbierenden Substanzen wie Bor und Cadmium sein.

Bei den Wellen von Generatoren werden die in den beiden Gleitlagern entstehenden Wärmeverluste durch Zufuhr von ca. 10-20 °C kaltem Wasser umspült bzw. das Lageröl abgekühlt, um so die Lagertemperatur auf rund 50 bis 55 °C konstant zu halten. Zirka 25 Liter/s und Maschine sind ein unterer Richtwert für eine 20-MVA-Maschine bei 600 1/min und natürlich abhängig von der Maschinenleistung. Bei Großgeneratoren mit beispielsweise 1200 MW Leistung können sowohl der Generator-Läufer wie auch der Generatorständer mit Wasser gekühlt werden. Die erforderlichen Kühlwassermengen betragen bei voller Last für den Läufer ca. 120 m³/h und für den Ständer ca. 25 m³/h.

Die Wassermengen für diese Kühlung sind somit ungleich geringer, als es kalorische Kraftwerke zur Dampfkondensation benötigen.

Einsatz in Verbrennungsmotoren[Bearbeiten]

Viertaktmotoren und Diesel-Zweitaktmotoren in Schiffen werden bis auf wenige Ausnahmen wassergekühlt. Die Wasserkühlung bietet gegenüber der Luftkühlung verschiedene Vorteile. Wasser gewährleistet einen gleichmäßigen Wärmetransport und kann eine große Wärmemenge abführen. Für die Kühlung wird kaum Leistung (Hilfsenergie) benötigt, gegenüber Kühlgebläsen bei der Luftkühlung; ganz ohne Hilfsenergie kann eine Flüssigkeits-Kühlung auskommen, wenn die Thermosiphon-Wirkung einen ausreichenden Umlauf des Kühlmediums sicherstellt. Die Abzweigung von Wärme zu Heizzwecken ist denkbar einfach durch einen Heizungswärmeübertrager möglich. Die Motorblockgestaltung und damit die notwendigen Gussformen sind leicht herzustellen. Die Wasserkühlung hält den Temperaturunterschied einzelner Motorteile und damit den möglichen Verzug gering. Dies wiederum erlaubt es, die Leistungsdichte von Verbrennungsmotoren zu erhöhen. Der Wassermantel wirkt zudem geräuschdämmend. Insbesondere hoch verdichtende Ottomotoren sind im Bereich der Zylinderköpfe auf Wasserkühlung angewiesen, da es sonst vermehrt durch die Kompressionswärme zu unerwünschter Selbstentzündung und damit zu einer Klopfneigung käme. Durch die hohe Wärmetransportfähigkeit von Wasser können die Motoren kompakter gebaut werden. Um die Siedetemperatur des Kühlmittels zu erhöhen, wird das Kühlsystem meistens mit Überdruck betrieben.

Die Wasserkühlung hat auch verschiedene Nachteile. Bei großer Kälte kann das Kühlmittel einfrieren; es dehnt sich dann aus und kann den Motorblock zum Platzen bringen. Durch zusätzliche Fehlermöglichkeiten, wie undichter Kühlkreislauf, Defekte an Wasserpumpe, Kühler, Thermostat usw. sinkt die Zuverlässigkeit.

Bei Verbrennungsmotoren in Schiffen und auf Booten wird oft das Fahrwasser als Kühlmittel verwendet.

Wasserkühlung in Geräten[Bearbeiten]

Sender und Leistungselektronik[Bearbeiten]

Seit 1930 werden die röhrenbestückten Endstufen von Sendern hoher Leistung mit Wasser gekühlt. Da hierbei hohe elektrische Spannungen zum Einsatz kommen, nur destilliertes oder zumindest deionisiertes Wasser zum Einsatz kommen, da dieses nur eine sehr geringe elektrische Leitfähigkeit besitzt. Dieses gibt in einem Wärmeübertrager seine Wärme an einem zweiten Kreislauf ab, in dem das Wasser keinen besonderen Reinheitsanforderungen genügen muss, da es mit keinen spannungsführenden Komponenten in Kontakt kommt.

Bei Hochleistungsröhren wird die Siedekondensationskühlung angewandt. Bei dieser Technik sind Dampferzeugung und Kondensation räumlich nicht voneinander getrennt. Das Kühlmittel durchfließt den Kühlkanal, der mit zur Anodeninnenseite hin orientierten Nuten ausgestattet ist. Der in diesen Nuten entstehende Dampf gerät in den Hauptkühlkanal, wo er verwirbelt wird und wieder kondensiert. Da sich dieser Vorgang bei Temperaturen von über 100 °C abspielt, und den Aggregatzustand flüssig zu gasförmig nutzt, können mit diesem Kühlverfahren auf Grund der dafür notwendigen Verdampfungswärme auch bei relativ kleinen Röhren große Wärmemengen abgeführt werden.

Wasserkühlung wird auch in der Leistungselektronik angewandt, zum Beispiel an Sendeanlagen oder Stromrichtern (zum Beispiel Traktionsstromrichter in Schienenfahrzeugen). Kleinere halbleiterbestückte Sender haben keine Wasserkühlung. In neueren Sendern wird bei größerer Leistung ab ca. 1 KW von einigen Herstellern die Wasserkühlung eingesetzt.

Großtransformatoren und Röntgengeräte verwenden Öl zur Kühlung.

Personal Computer[Bearbeiten]

Hauptartikel: PC-Wasserkühlung

Wasserkühlungen werden auch in modernen PC-Systemen zur leisen und effizienten Kühlung einzelner Komponenten eingesetzt. Dabei wird am häufigsten der Hauptprozessor gekühlt. Weitere Komponenten, die in den Kühlkreislauf eingebunden werden können, sind Grafikkarten, Hauptplatinen­chipsätze, Festplatten, Netzteile, Spannungswandler und auch RAM-Bausteine.

Wasserkühlungen für PCs sind in PC-Moddingkreisen sehr verbreitet. Mittlerweile ist ein großer Markt um Wasserkühlungen entstanden.

Die Vorteile einer Wasserkühlung sind zum einen die effektive Kühlung der Hardware mit für Modder und Overclocker wichtigem Übertaktungs-Spielraum der CPU durch verbesserte Wärmeabfuhr. Zum anderen arbeitet die Kühlung fast lautlos, da auf dem Radiator (Wärmeübertrager) große, langsam drehende Lüfter eingesetzt oder auch passive Radiatoren ohne Lüfter verwendet werden können. Außerdem erhöht sich in der Regel die Zuverlässigkeit und Lebensdauer der mit Wasser gekühlten Komponenten. Je nach verwendeter Pumpe kann die Wasserkühlung eine der stromsparendsten Kühlungsmethoden sein.

Nachteilig ist der erheblich größere Installationsaufwand, die vergleichsweise hohen Kosten und – bei nicht sachgerechter Installation – der Wartungsbedarf. Häufig führt der Verzicht auf den Einsatz von Gehäuselüftern dazu, dass einzelne Komponenten überhitzen, da sie nicht im Kühlkreislauf einbezogen sind. Je nach Anzahl der verbauten Komponenten kann ein größerer Platzbedarf im Gehäuse erforderlich sein.

Wasser besitzt, verglichen mit anderen in Frage kommenden Flüssigkeiten, die höchste Wärmekapazität und ist daher erste Wahl beim Bau einer Umlauf-Flüssigkeitskühlung. Um mögliche Korrosionsprobleme bei der üblichen Mischmetall-Installation zu vermeiden, kann handelsübliches Frostschutzmittel aus dem KFZ-Zubehör verwendet werden.

Thermografische Aufnahme der aktiven Wasserkühlung eines Lasersystems. Infolge der Temperaturdifferenz ist der wasserzuführende Schlauch schwarz, der abführende rosa dargestellt.

Laser und Lampen[Bearbeiten]

Unter anderem die Gasentladungslampen für die Anregung von Festkörperlasern werden wassergekühlt. Sie befinden sich zusammen mit dem Laserstab direkt im deionisierten Kühlwasser.

Auch Hochleistungs-Diodenlaser sind oft wassergekühlt. Man unterscheidet hier zwischen aktiver und passiver Kühlung:

  • bei aktiver Wasserkühlung strömt das Wasser in der Wärmesenke direkt unter dem Laser-Barren in Mikrokanälen
  • bei passiver Wasserkühlung ist lediglich die den Laser-submount tragende Wärmesenke wassergekühlt

Kohlendioxidlaser hoher Leistung und deren Spiegel sind ebenfalls oft wassergekühlt:

  • langsam längsgeströmte Kohlendioxidlaser besitzen Entladungsrohre mit einem Wasserkühlmantel
  • schnell geströmte und quergeströmte Kohlendioxidlaser besitzen einen Gas-Wasser-Wärmetauscher im Gaskreislauf

Weitere Anwendungen[Bearbeiten]

Als Beispiele seien hier noch einige Anwendungen von Wasserkühlung genannt: Destillation, Hochofen, Labor-Thermostate, Hochleistungs-Elektromotoren, Plasmastrahl-Düsen, alte Maschinengewehre

Siehe auch[Bearbeiten]

Weblinks[Bearbeiten]