Beth-Funktion

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von )
Zur Navigation springen Zur Suche springen

Die Beth-Funktion, benannt nach dem zweiten Buchstaben des hebräischen Alphabets und auch als geschrieben, ist eine in der Mengenlehre, genauer in der Theorie der Kardinalzahlen, verwendete Aufzählung gewisser unendlicher Kardinalzahlen.

Definition[Bearbeiten | Quelltext bearbeiten]

Die Beth-Funktion ordnet jeder Ordinalzahl eine wie folgt rekursiv definierte Kardinalzahl zu:[1]

  • , wobei die kleinste unendliche Kardinalzahl ist, siehe Aleph-Funktion.
  • für Nachfolger-Ordinalzahlen . Dabei steht die rechte Seite für die Potenz von Kardinalzahlen.
  • für Limes-Ordinalzahlen .

Bemerkungen[Bearbeiten | Quelltext bearbeiten]

Die Kontinuumshypothese ist gleichbedeutend mit , denn ist definitionsgemäß die Mächtigkeit der Potenzmenge einer abzählbaren Menge und daher gleichmächtig zum Kontinuum . Die verallgemeinerte Kontinuumshypothese ist äquivalent zu , das heißt für alle Ordinalzahlen .

Eine Limes-Kardinalzahl heißt ein starker Limes, wenn für alle Kardinalzahlen . Eine Kardinalzahl ist genau dann eine starke Limes-Kardinalzahl, wenn für eine Limes-Ordinalzahl ist.[2]

Es gilt für alle Ordinalzahlen . Man kann zeigen, dass es Fixpunkte geben muss, das heißt solche Ordinalzahlen , für die gilt. Der kleinste Fixpunkt ist der Limes der Folge , der informal als dargestellt wird. Ebenso sind stark unerreichbare Kardinalzahlen Fixpunkte der Beth-Funktion.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Thomas Jech: Set Theory. 3rd millennium edition, revised and expanded. Springer, Berlin u. a. 2003, ISBN 3-540-44085-2, Kapitel I.5, S. 55.
  2. W. Wistar Comfort, Stylianos Negrepontis: The Theory of Ultrafilters (= Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen. Bd. 211). Springer, Berlin u. a. 1974, ISBN 3-540-06604-7, Lemma 1.23.