Soddy-Kreis

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 16. Oktober 2022 um 17:47 Uhr durch Kmhkmh (Diskussion | Beiträge) (Weblinks). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen
Frederick Soddy

Die Soddy-Kreise sind die Lösungen für einen Spezialfall des apollonischen Problems, wobei die drei gegebenen Kreise, deren Mittelpunkte die Ecken eines Dreiecks sind, einander berühren. Sie sind benannt nach Frederick Soddy, der anhand dieser Kreise den Satz von Descartes wiederentdeckte und am 20. Juni 1936 in der Zeitschrift Nature in Form eines Gedichtes mit dem Titel The kiss precise veröffentlichte.

Definition

Gegeben seien ein Dreieck sowie die drei Kreise mit den Mittelpunkten , bzw. , die jeweils durch die Berührpunkte des Inkreises mit den anliegenden Dreiecksseiten gehen. (Diese drei Kreise berühren einander paarweise.) Die beiden Soddy-Kreise sind nun diejenigen Kreise, welche die genannten drei Kreise berühren. Im Allgemeinen unterscheidet man den inneren und den äußeren Soddy-Kreis.

Eigenschaften

  • Nach dem Satz von Descartes gilt für die Krümmung der beiden Soddy-Kreise:
Hierbei bezeichnen die Krümmungen (= Kehrwerte der Radien) der Kreise um die Eckpunkte A, B und C.
Dabei bezeichnet den Flächeninhalt von , den Inkreisradius, den Umkreisradius und den Umfang. Das Pluszeichen gilt für den inneren Soddy-Kreis, das Minuszeichen für den äußeren.
  • Der Radius des inneren Soddy-Kreises wird mit der Formel von W. K. B. Holz berechnet.
  • Die Kreise um die Ecken des Dreiecks werden vom äußeren Soddy-Kreis für einschließend, für ausschließend berührt. Im Grenzfall () ergibt sich ein unendlicher Radius, d. h. aus dem äußeren Soddy-Kreis wird eine gemeinsame Tangente.

Quellen