Abschirmung (Atomphysik)

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Abschirmung bezeichnet in einem Mehrelektronen-Atom die Verringerung der anziehenden Wechselwirkung zwischen einem Elektron und dem Kern durch die Wirkung der übrigen Elektronen. Die Energie  eines Elektrons hängt im Zentralfeldmodell des Atoms ab von den Quantenzahlen und :

mit

  • effektiver Kernladungszahl
    • Kernladungszahl
    • Abschirmkonstante  (s. u.)
  • effektiver Quantenzahl (s. u.)
    • Hauptquantenzahl
    • Quantendefekt
  • Rydberg-Energie (dort zum Vergleich auch die Formel für Ein-Elektron-Systeme).

Für die Radialteile der zugehörigen Einelektron-Wellenfunktionen wurde von John C. Slater folgender analytischer Ausdruck vorgeschlagen:

mit dem Normierungsfaktor N.

Einelektronen-Wellenfunktionen mit so ermittelten Radialanteilen heißen Slater-Orbitale.

Slater-Regeln[Bearbeiten | Quelltext bearbeiten]

Die Abschirmkonstante  und die effektive Quantenzahl  werden wie folgt ermittelt:

  1. Elektronenschalen mit Hauptquantenzahlen größer n bleiben unberücksichtigt.
  2. Jedes weitere Elektron mit gleichem n trägt 0,35 zu bei (für n = 1 aber nur 0,3).
  3. Jedes Elektron der Schale n – 1 trägt zu bei:
  • für Nebenquantenzahlen l = 0 (s-Unterschale) und l = 1 (p-Unterschale): jeweils 0,85
  • für Nebenquantenzahlen l = 2 (d-Unterschale) und l = 3 (f-Unterschale): jeweils 1,0.
4. Alle Elektronen aus noch tiefer liegenden Schalen liefern einen Beitrag von 1,0.

Zum Quantendefekt.

Daraus folgt:

n n'
1 1,0
2 2,0
3 3,0
4 3,7
5 4,0
6 4,2

Auswirkung[Bearbeiten | Quelltext bearbeiten]

Durch die Abschirmung wird im Rahmen des Sommerfeldschen Atommodell die Bahnentartung, sprich die Energiegleichheit von Zuständen gleicher Hauptquantenzahl n, aber unterschiedlicher Drehimpulsquantenzahl l, aufgehoben, da die Bahnen unterschiedlicher Drehimpulsquantenzahl unterschiedlichen Abschirmungen unterliegen.

Weblinks[Bearbeiten | Quelltext bearbeiten]