Alexander Givental

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Alexander Givental

Alexander B. Givental (* 1958) ist ein russischstämmiger US-amerikanischer Mathematiker, der sich mit symplektischer Topologie, Singularitätentheorie und algebraischer Geometrie mit Wechselwirkungen zur Stringtheorie beschäftigt.

Givental ist ein Schüler von Wladimir Arnold, bei dem er 1987 an der Lomonossow-Universität promovierte (Singularitäten Lösungen Hamilton-Jacobi-Gleichungen in Variationelle Probleme mit Ungleichungs-Nebenbedingungen). Er ist seit etwa Mitte der 1990er Jahre Professor an der Universität Berkeley.

Nachdem Stringtheoretiker[1] 1991 rationale Kurven auf Calabi-Yau-Mannigfaltigkeiten, speziell auf dreidimensionalen algebraischen Varietäten (Quintiken, Lösungen von Polynomen 5. Grades), mit Hilfe einer Spiegelsymmetrie zu anderen Calabi-Yau-Mannigfaltigkeiten abzählen konnten[2], war Givental einer der Mathematiker[3], der dafür eine mathematische strenge Begründung an speziellen Calabi-Yau-Mannigfaltigkeiten fand. Givental verwendete dabei die Floerhomologie und Equivariante Quantenkohomologie.

1994 war er Invited Speaker auf dem ICM (Homological geometry and mirror symmetry).

Er gab das in Russland seit 1892 verbreitete Geometrielehrbuch von Andrei Petrowitsch Kisseljow in englischer Übersetzung heraus.

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Verweise[Bearbeiten | Quelltext bearbeiten]

  1. Candelas, de la Ossa, Green, Parkes „A pair of Calabi-Yau-Manifolds as an exactly soluble superconformal theory“, Nuclear Physics, B, Bd. 359, 1991, S. 21–74
  2. aus Sicht der Physiker wurde durch diese Symmetrie die Äquivalenz verschiedener Grundzustände der Stringtheorie gezeigt. Die Calabi-Yau-Mannigfaltigkeiten entsprechen den kompaktifizierten Dimensionen.
  3. einen anderen Beweis gaben B.Lian, Liu, Shing-Tung Yau „Mirror Symmetry I“, Asian Journal of Mathematics, Bd.1, 1997, S.729