Analytische Geometrie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die analytische Geometrie (auch Vektorgeometrie) ist ein Teilgebiet der Geometrie, das algebraische Hilfsmittel (vor allem aus der linearen Algebra) zur Lösung geometrischer Probleme bereitstellt. Sie ermöglicht es in vielen Fällen, geometrische Aufgabenstellungen rein rechnerisch zu lösen, ohne die Anschauung zu Hilfe zu nehmen.

Geometrie, die ihre Sätze ohne Bezug zu einem Zahlensystem auf einer axiomatischen Grundlage begründet, wird demgegenüber als synthetische Geometrie bezeichnet.

Die Verfahren der analytischen Geometrie werden in allen Naturwissenschaften angewendet, vor allem aber in der Physik, wie zum Beispiel bei der Beschreibung von Planetenbahnen. Ursprünglich befasste sich die analytische Geometrie nur mit Fragestellungen der ebenen und der räumlichen (euklidischen) Geometrie. Im allgemeinen Sinn jedoch beschreibt die analytische Geometrie affine Räume beliebiger Dimension über beliebigen Körpern.

Das Koordinatensystem[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Koordinatensystem
Kartesisches Koordinatensystem im zweidimensionalen Raum

Entscheidendes Hilfsmittel der analytischen Geometrie ist ein Koordinatensystem. In der Praxis verwendet man meist ein kartesisches Koordinatensystem. Für manche einfache Fragestellungen, etwa die Bestimmung von Geradenschnittpunkten, die Untersuchung von Geraden auf Parallelität oder die Berechnung von Teilverhältnissen, würde allerdings schon ein schiefwinkliges Koordinatensystem ausreichen. Unverzichtbar ist ein kartesisches Koordinatensystem, wenn Abstände oder Winkel berechnet werden sollen.

Vektoren[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Vektor

Viele Rechnungen der analytischen Geometrie werden durch die Methoden der Vektorrechnung vereinheitlicht und vereinfacht. Obwohl die gesamte analytische Geometrie ohne Vektoren erfunden wurde und natürlich immer noch ohne Vektoren praktiziert werden kann und umgekehrt der Vektorraum als ein abstrakt-algebraisches Konstrukt ohne geometrischen Bezug definiert werden kann, erscheint die Verwendung von Vektoren in kartesischen Koordinatensystemen so natürlich, dass „Lineare Algebra und Analytische Geometrie“ in der Sekundarstufe II und im mathematisch-physikalisch-technischen Grundstudium allgemein als ein Kurs unterrichtet werden.

Koordinaten- und Parametergleichungen[Bearbeiten | Quelltext bearbeiten]

Kompliziertere geometrische Gebilde wie Geraden, Ebenen, Kreise, Kugeln usw. werden als Punktmengen aufgefasst und durch Gleichungen beschrieben. Dabei kann es sich um Koordinatengleichungen oder um Parametergleichungen handeln:

Implizite Koordinatengleichung
Ein von den Koordinaten abhängiger Rechenausdruck wird gleich 0 gesetzt.
Beispiel (Gerade der Zeichenebene):
Explizite Koordinatengleichung
Eine der Koordinaten wird durch die anderen ausgedrückt.
Beispiel (Ebene im Raum):
Explizite Koordinatengleichungen haben den Nachteil, dass man oft Fallunterscheidungen durchführen muss; so ist es beispielsweise
in der Ebene unmöglich, eine Parallele zur -Achse in der Form darzustellen.
Parametergleichung
Der Ortsvektor eines beliebigen Punktes des Gebildes ist durch einen vektoriellen Rechenausdruck gegeben, der einen oder mehrere Parameter enthält.
Beispiel (Gerade im Raum):

Analytische Geometrie der Ebene[Bearbeiten | Quelltext bearbeiten]

Punkte in der Ebene[Bearbeiten | Quelltext bearbeiten]

Jeder Punkt der Ebene wird durch zwei Koordinaten beschrieben, z. B. . Die Koordinaten nennt man üblicherweise (in dieser Reihenfolge) die -Koordinate (auch: Abszisse) und die -Koordinate (auch: Ordinate). Gebräuchlich sind auch die Bezeichnungen und .

Die zusammengefassten Koordinaten von Punkten bilden im ebenen Fall geordnete Paare.

Punktkoordinaten.PNG

Geraden in der Ebene[Bearbeiten | Quelltext bearbeiten]

Koordinatengleichung (implizit)
Man spricht auch von der Normal(en)form der Geradengleichung, da der Vektor senkrecht (normal) zur Geraden steht.
Parametergleichung
ParGlGerade.png
Dabei ist der Ortsvektor eines beliebigen, aber fest gewählten Punktes der Geraden (Stützpunkt); ist ein so genannter Richtungsvektor, also ein Vektor, dessen Richtung parallel zur Geraden ist.

Kurven zweiter Ordnung in der Ebene[Bearbeiten | Quelltext bearbeiten]

Durch eine (implizite Koordinaten-)Gleichung zweiten Grades

ist im Allgemeinen ein Kegelschnitt gegeben. Je nach den Werten der Koeffizienten kann es sich dabei um eine Ellipse (Spezialfall: Kreis), eine Parabel oder eine Hyperbel handeln.

Analytische Geometrie des euklidischen Raumes[Bearbeiten | Quelltext bearbeiten]

Punkte im Raum[Bearbeiten | Quelltext bearbeiten]

Jeder Punkt des Raumes ist durch drei Koordinaten bestimmt, z. B. . Jedem Punkt ordnet man seinen Ortsvektor zu, das ist der Verbindungsvektor des Ursprungs des Koordinatensystems mit dem gegebenen Punkt. Seine Koordinaten entsprechen denen des Punktes , werden aber als Spaltenvektor geschrieben:

Die Koordinaten werden (in dieser Reihenfolge) als -, - und -Koordinate oder als -, - und -Koordinate bezeichnet.

Die zusammengefassten Koordinaten von Punkten bilden im räumlichen Fall 3-Tupel.

Geraden im Raum[Bearbeiten | Quelltext bearbeiten]

Koordinatengleichungen
Geraden im Raum können nicht durch eine einzige Koordinatengleichung beschrieben werden. Man kann eine Gerade aber stets als Durchschnitt (Schnittmenge) zweier Ebenen auffassen und Koordinatengleichungen dieser beiden Ebenen (siehe unten) verwenden, um die Gerade eindeutig festzulegen.
Parametergleichung

Die Gleichung hat also dieselbe Form wie im zweidimensionalen Fall.

Ebenen im Raum[Bearbeiten | Quelltext bearbeiten]

Koordinatengleichung (implizit)
Diesen Typ der Ebenengleichung bezeichnet man als Normal(en)form, da der Vektor senkrecht (normal) zur Ebene steht.
Parametergleichung
ParGlEbene.png
ist der Ortsvektor eines beliebigen, aber fest gewählten Punktes der Ebene (Stützpunkt); und sind linear unabhängige Richtungsvektoren (oder Spannvektoren), also Vektoren parallel zur Ebene, die die Ebene „aufspannen“.

Flächen zweiter Ordnung im Raum[Bearbeiten | Quelltext bearbeiten]

Die allgemeine Koordinatengleichung zweiten Grades

beschreibt eine Fläche zweiter Ordnung. Die wichtigsten Spezialfälle sind:

Ellipsoid, elliptisches Paraboloid, hyperbolisches Paraboloid, einschaliges Hyperboloid, zweischaliges Hyperboloid, Kegel, elliptischer Zylinder, parabolischer Zylinder, hyperbolischer Zylinder.

Verallgemeinerung: Analytische Geometrie eines beliebigen affinen Raumes[Bearbeiten | Quelltext bearbeiten]

Die Konzepte der analytischen Geometrie lassen sich dadurch verallgemeinern, dass man Koordinaten aus einem beliebigen Körper sowie beliebige Dimensionen zulässt.

Ist ein Vektorraum über einem Körper und ein zu gehöriger affiner Raum, so lässt sich ein -dimensionaler Unterraum von beschreiben durch die Parametergleichung

.

Dabei ist der Ortsvektor eines beliebigen, aber festgewählten Punktes des Unterraumes (Stützpunkt); die Vektoren sind linear unabhängige Vektoren, also eine Basis des Untervektorraums von , der zum betrachteten Unterraum von gehört.

Für handelt es sich um die Gleichung einer Geraden, für um die Gleichung einer Ebene. Ist um 1 kleiner als die Dimension von bzw. , so spricht man von einer Hyperebene.

In Analogie zu den Kurven zweiter Ordnung (Kegelschnitten) der ebenen Geometrie und zu den Flächen zweiter Ordnung der räumlichen Geometrie betrachtet man im -dimensionalen affinen Raum auch so genannte Quadriken, das sind Hyperflächen zweiter Ordnung (mit der Dimension ), die durch Koordinatengleichungen zweiten Grades definiert sind:

Typische Aufgabenstellungen der analytischen Geometrie[Bearbeiten | Quelltext bearbeiten]

Inzidenz-Überprüfung[Bearbeiten | Quelltext bearbeiten]

Hier geht es darum festzustellen, ob ein gegebener Punkt zu einer gegebenen Punktmenge (etwa zu einer Geraden) gehört.

Im zweidimensionalen Raum[Bearbeiten | Quelltext bearbeiten]

Als Beispiel soll die Gerade mit der expliziten Koordinatengleichung

betrachtet werden.

Der Punkt liegt auf dieser Geraden, wie man durch Einsetzen der Koordinaten und (Punktprobe) erkennt:

Der Punkt hingegen liegt nicht auf der Geraden. Für und gilt nämlich

.
Gerade als Punktmenge.PNG

Im dreidimensionalen Raum[Bearbeiten | Quelltext bearbeiten]

Es soll geprüft werden, ob der Punkt auf der Geraden mit folgender Parameterform liegt:

.

Wird für der Ortsvektor von eingesetzt, so führt das zu folgenden 3 Gleichungen:

Da in allen drei Fällen denselben Wert hat (hier ), liegt auf der Geraden.

Bestimmung der Schnittmenge zweier Punktmengen[Bearbeiten | Quelltext bearbeiten]

Die Bestimmung der Schnittmenge zweier Punktmengen (z. B. des Schnittpunkts zweier Geraden) läuft auf das Lösen eines Gleichungssystems hinaus. Je nachdem, in welcher Form die beiden Punktmengen beschrieben werden, variiert das Verfahren ein wenig:

Fall 1
Beide Punktmengen sind durch Koordinatengleichungen gegeben.
In diesem Fall wird die Schnittmenge durch die Gesamtheit der Koordinatengleichungen beschrieben.
Fall 2
Beide Punktmengen sind durch Parametergleichungen gegeben.
Die Schnittmenge erhält man durch Gleichsetzen der rechten Seiten dieser Gleichungen.
Fall 3
Eine der Punktmengen ist durch eine Koordinatengleichung gegeben, die andere durch eine Parametergleichung.
In diesem Fall setzt man die einzelnen Koordinaten der vektoriellen Parametergleichung in die Vektorgleichung ein.

Im zweidimensionalen Raum[Bearbeiten | Quelltext bearbeiten]

Es soll geprüft werden, ob und wo sich die Graphen der Funktionen und schneiden. Dabei entspricht und :

2x^2-2 und 2x+2 Graphen.png

Um die Schnittpunkte zu berechnen, werden nun die Funktionsterme der Gleichungen der beiden Funktionen gleichgesetzt. Auf diese Weise findet man die -Koordinate(n), für welche die beiden Funktionen die gleiche -Koordinate haben:

Das Lösen dieser quadratischen Funktion führt zu den Lösungen: und .

Durch Einsetzung in eine der beiden anfänglichen Gleichungen ergibt das die Schnittpunkte bei: und .

Im dreidimensionalen Raum[Bearbeiten | Quelltext bearbeiten]

Es soll geprüft werden, ob und in welchem Punkt sich die beiden Geraden und schneiden. Die beiden Geraden seien definiert wie folgt:

Wie im zweidimensionalen Raum werden auch hier die beiden Gleichungen gleichgesetzt:

Die Vektorgleichung kann man in folgende 3 Gleichungen zerlegen:

Addieren der ersten und letzten Gleichung liefert bzw. . Aus der ersten Gleichung ergibt sich damit durch Einsetzen , also . Diese Lösung erfüllt auch die zweite Gleichung, denn .

Den Ortsvektor des Schnittpunktes der Geraden erhält man, indem man einen der beiden berechneten Parameter () in die entsprechende Gerade () einsetzt:

Geschichte[Bearbeiten | Quelltext bearbeiten]

Die analytische Geometrie wurde von dem französischen Mathematiker und Philosophen René Descartes begründet. Wesentliche Erweiterungen sind Leonhard Euler zu verdanken, der sich insbesondere mit den Kurven bzw. Flächen zweiter Ordnung befasste. Die Entwicklung der Vektorrechnung (unter anderem durch Hermann Graßmann) ermöglichte die heute übliche Vektorschreibweise.

David Hilbert hat nachgewiesen, dass die dreidimensionale analytische Geometrie vollständig äquivalent ist zu der (synthetischen) euklidischen Geometrie in der von ihm präzisierten Form. In praktischer Hinsicht ist sie dieser weit überlegen. In der ersten Hälfte des 20. Jahrhunderts wurde deshalb die Ansicht vertreten, Geometrie in der Art, wie sie seit Euklid gelehrt wurde, sei nur noch von geschichtlichem Interesse.

Nicolas Bourbaki ging sogar noch einen Schritt weiter: Er verzichtete ganz auf geometrische Begriffsbildungen wie Punkt, Gerade usw. und hielt mit Behandlung der Linearen Algebra alles Nötige für gesagt. Dabei wird natürlich – wie stets bei Bourbaki – von den Bedürfnissen der angewandten Mathematik völlig abgesehen.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wikibooks: Analytische Geometrie – Lern- und Lehrmaterialien