Bürstenloser Gleichstrommotor

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
BLDC-Motor mit 3×3 Statorspulen in der Mitte, herausgebrochen aus einer Platine. Die Magnetisierung des glockenförmigen Rotors mit seinen 6 Polen ist im oberen Bildteil schwarz hervorgehoben.

Der bürstenlose Gleichstrommotor (englisch Brushless DC Motor, abgekürzt BLDC- oder BL-Motor sowie auch electronically commutated Motor, kurz EC-Motor) basiert entgegen der Namensgebung nicht auf dem Funktionsprinzip der Gleichstrommaschine, sondern ist aufgebaut wie eine Drehstrom-Synchronmaschine mit Erregung durch Permanentmagnete. Die (oft dreisträngige) Drehstromwicklung wird durch eine geeignete Schaltung so angesteuert, dass sie ein drehendes magnetisches Feld erzeugt, welches den permanenterregten Rotor mitzieht. Das Regelverhalten ähnelt weitgehend einer Gleichstrom-Nebenschlussmaschine.

Einsatzbereiche von BLDC-Motoren liegen in Antrieben für Festplattenlaufwerken, PC-Lüfter, Quadrokopter und Modellflugzeugen. Ein breites Anwendungsgebiet ist zudem die Automatisierungstechnik insbesondere für Stelleinrichtungen in Form von Servomotoren, in Gelenken von Industrierobotern, bis hin zu Antriebssystemen für Werkzeugmaschinen wie Drehmaschinen.[1]

Funktionsweise[Bearbeiten | Quelltext bearbeiten]

Zerlegter BLDC-Motor im Floppy-Laufwerk und Rotor mit Ring aus Permanentmagneten

Bei BLDC-Motoren ist der Rotor mit Permanentmagneten bestückt und der feststehende Stator umfasst die Spulen. Neben dem Innenläufer findet auch der Aufbau als Außenläufer häufig Anwendung, und die Sonderform als Scheibenläufer lässt sich auch realisieren. Die Auslegung der Wicklung erfolgt üblicherweise als dreiphasiges System und je nach Drehzahlbereich mit niedriger bis sehr hoher Polzahl. Die Ausnahme bilden PC-Lüfter, die aus Kostengründen nur eine Phase und Sensor besitzen[2].

Das Stern-Ersatzschaltbild entspricht der Synchronmaschine, jedoch gibt es Unterschiede bei den Polschuhen und im Wicklungsaufbau. Idealerweise erzeugt ein BLDC-Motor bei Rotation eine trapezförmige Generatorspannung[3] (Back-EMF, Gegen-EMK). Wegen der einfacheren Konstruktion sind aber auch BLDC-Motoren mit sinusähnlicher Generatorspannung verbreitet, die aber während einer Umdrehung höhere Drehmomentschwankungen zeigen[3]. Hier unterscheidet sich der BLDC-Motor von einer Synchronmaschine letztlich nur noch durch die Ansteuerung mit Blockkommutierung.

Wie bei der Gleichstrom-Nebenschlussmaschine gilt: Die Generatorspannung des Motors ist proportional zur Motordrehzahl und der Strom durch den Motor entspricht dem abgegebenen Drehmoment.

Bei sensorgesteuerter Blockkommutierung enthält der BLDC-Motor noch drei Magnetsensoren (Hallsensor) zur Erkennung der Rotorlage.

Zur Realisierung der Blockkommutierung ist für den BLDC-Motor eine Brückenschaltung erforderlich, die im Fall eines dreiphasigen BLDC-Motors aus einer Brückenschaltung mit drei Gegentaktstufen besteht.

Kommutierung[Bearbeiten | Quelltext bearbeiten]

Dreiphasige Brückenschaltung am BLDC-Motor

Charakteristisch für den BLDC-Motor ist seine Kommutierung, die bei einem dreiphasigen Motor aus sechs Blöcken pro Drehfelddurchlauf („Motorumdrehung“) besteht, die sich jeweils vom Schaltzustand der Brückenschaltung unterscheiden. Besonders auffällig in der Tabelle zu den Kommutierungsblöcken ist, dass immer nur zwei Gegentaktstufen der Brücke aktiv sind und eine „schwimmt“ (floating). Die Spannung an diesem Brückenpunkt wird durch das Schaltungsnetz gemäß dem Stern-Ersatzschaltbild definiert. Die Brückensteuerung sorgt dafür, dass immer die Motorphase schwimmt, die – bei trapezoider Gegenspannung – gerade die Polarität wechselt (im Spannungsdiagramm punktiert).

Gelb: Phase gegen Masse
Blau: Mittelpunktspannung (gemittelt) Rot: Phase gegen Mittelpunktspannung (gemittelt)
Kommutierungsblöcke
1 2 3 4 5 6
V1/V2 0 z +1 +1 z 0
V3/V4 +1 +1 z 0 0 z
V5/V6 z 0 0 z +1 +1

z = schwimmend, 0 = Masse, +1 = Versorgungsspannung

Unipolare PWM am BLDC

Da die Brückensteuerung ähnlich dem Kommutator im Gleichstrommotor automatisch weiterschaltet, befindet sich das Statorfeld immer in dem Block mit der optimalen Magnetflussänderung (maximale Generatorspannung). Der Motor dreht hoch bis seine Generatorspannung der Versorgungsspannung entspricht. Zur Drehzahlsteuerung muss sich nicht unbedingt die Versorgungsspannung ändern, sondern in die Brückenschaltung kann auch ein PWM-Signal eingespeist werden. Dabei erfolgt eine Unterscheidung zwischen unipolarer und bipolarer PWM.

Bei unipolarer PWM schaltet die Gegentaktstufe, die auf Versorgungsspannung klemmt, immer wieder kurz auf Masse, so dass sich der Mittelwert der Spannung am Motor ändert. Der schwimmende Motoranschluss wird zeitweise negativ und durch Transistorschutzdioden gegen Masse geklemmt, was nicht effizient ist aber hingenommen wird.

Bei bipolarem PWM wechseln die beiden aktiven Gegentaktendstufen ihren Schaltzustand. Vorteil hierbei ist, dass auch bei niedriger Drehzahl bis hin zum Stillstand ein hohes Bremsmoment möglich ist. Für einen Roboterarm, der seine Position halten soll, ist das unabdingbar.

Durch auf- und entmagnetisieren der Motorphasen bei jedem Kommutierungsschritt und durch nicht ideal trapezoide Generatorspannung zeigt der BLDC bei jedem Kommutierungsschritt mehr oder weniger stark ausgeprägte Drehmomentrippel.

Sensorgesteuerte Kommutierung[Bearbeiten | Quelltext bearbeiten]

EC-Motor als Radnabenantrieb eines Fahrrades.

In diesem Fall befinden sich Sensoren wie beispielsweise Hall-Sensoren zur Erfassung des magnetischen Flusses des Rotors oder optische Sensoren im Bereich des Stators. Entsprechend dieser Stellungsinformation werden über geeignete Leistungstreiber von der Steuerelektronik die Wicklungen angesteuert, die im Rotor ein Drehmoment erzeugen. Der Vorteil ist, dass die sensorgesteuerte Kommutierung auch bei sehr geringen Drehzahlen bzw. im Stand funktioniert. Gewöhnlich werden bei dieser Kommutierung nicht alle Phasen zugleich bestromt. Bei den Dreiphasenmotoren ist üblicherweise zu jedem Zeitpunkt jeweils eine Phase stromlos.

Sensorlose Kommutierung[Bearbeiten | Quelltext bearbeiten]

Bei der sensorlosen Kommutierung erfolgt die Erfassung der Rotorposition über die in den Spulen des Stators ausgelöste Gegenspannung, welche von der elektronischen Steuerschaltung ausgewertet wird. Allerdings ist zur Auswertung der Gegenspannung eine gewisse Mindestdrehzahl erforderlich. Sensorlose EC-Motoren müssen daher wie Synchronmotoren bzw. Schrittmotoren bis zum Erreichen der Mindestdrehzahl blind geschaltet werden.

Mittlerweile gibt es allerdings Verfahren, mit denen ein EC-Motor auch unterhalb dieser Mindestdrehzahl nicht blind gesteuert wird. Dazu werden bei Stillstand kurze Stromimpulse gesendet, die den Motor zwar nicht bewegen, aber durch das magnetische Feld des Rotors beeinflusst werden. Das Magnetfeld mindert oder verstärkt den Stromfluss und verändert so die Zeit, die ein Stromimpuls benötigt, um eine Schwelle zu überschreiten. Diese Zeiten werden gemessen, und man kann damit die Rotorposition schon bei Stillstand bestimmen.

Das Anlaufen des Motors auf eine Drehzahl, bei der die Gegenspannung ausgewertet werden kann, kann nun mit einem speziellen Verfahren geregelt werden. Dabei nutzt man die Stern- oder auch Dreiecksschaltung des Motors, in der genau sechs verschiedene Ströme fließen können. Ein Strom wird dabei für den Antrieb verwendet und jeweils ein geringer Strom 60° el. vor und hinter dem Antriebsstrom wird durch den Rotormagneten beeinflusst. Kommutiert, also um 60° el. weiter geschaltet, wird immer dann, wenn die Magnetachse mit der Achse des antreibenden Stromes übereinstimmt (°el. bezeichnet den Winkel in der Raumzeigerdarstellung. Er gleicht der mechanischen Winkellage des Rotors, multipliziert mit der Polpaarzahl). Das kann gemessen werden, da dort die Differenz der beiden geringeren Messströme ein Maximum hat.

Vektorregelung[Bearbeiten | Quelltext bearbeiten]

BLDC-Motoren können auch mit einer Vektorregelung betrieben werden, welche bei anspruchsvollen Aufgaben der Antriebstechnik Anwendung findet. Hierbei erfolgt die Weiterschaltung in den nächsten Kommutierungsblock vorauseilend oder verzögert. Das kompensiert die Zeit, die das Ummagnetisieren der Motorphasen erfordert Zeit und hängt von der Drehzahl und dem Drehmoment ab.

Andere bürstenlose Maschinen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Bürstenloser Motor

Neben dem EC-Motor mit elektronischer Kommutierung existieren eine Reihe von bürstenlosen Maschinen wie die Asynchronmaschine (Käfigläufer), die Synchronmaschine (Innenpolmaschine mit bürstenloser Erregung oder Permanenterregung) oder die Kaskadenmaschine. Diese Maschinen können als Motor oder auch als Generator betrieben werden und werden mit mehrphasiger Wechselspannung betrieben.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Hans-Dieter Stölting, Eberhard Kallenbach: Handbuch Elektrische Kleinantriebe. 3. Auflage. Hanser, 2006, ISBN 3-446-40019-2.
  • Roland Büchi: Brushless-Motoren und -Regler. 1. Auflage. Verlag für Technik und Handwerk, vth, 2011, ISBN 978-3-88180-427-1.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Patent DE10102235A1: Bürstenlose Gleichstrommaschine. Veröffentlicht am 14. August 2002.
  2. ON Semiconductor: FAN Motor Driver, Single-phase. Abgerufen am 13. Mai 2018.
  3. a b Texas Instruments: Trapezoidal Control of BLDC Motors Using Hall Effect Sensors. Abgerufen am 13. Mai 2018.