Bewertungstheorie

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Im mathematischen Teilgebiet der Bewertungstheorie geht es um Verallgemeinerungen der Frage, durch welche Potenz einer festen Primzahl eine natürliche Zahl teilbar ist.

p-Bewertung[Bearbeiten | Quelltext bearbeiten]

Es sei eine Primzahl.

Die -Bewertung (auch: die -adische Bewertung oder der -Exponent) einer natürlichen oder ganzen Zahl ist die größte Zahl , so dass noch durch teilbar ist. Die -Bewertung gibt an, wie oft eine Primzahl in der Primfaktorzerlegung einer natürlichen oder ganzen Zahl vorkommt.

Die -Bewertung einer natürlichen Zahl ist der Exponent der Primzahl in der Primfaktorzerlegung von . Ist

so ist

Tritt eine Primzahl nicht in der Primfaktorzerlegung von auf, dann ist .

Man setzt , weil jede Potenz jeder Primzahl die 0 teilt.

Die -Bewertung einer ganzen Zahl ist die ihres Betrags.

Die -Bewertung einer rationalen Zahl ist die Differenz der -Bewertungen des Zählers und des Nenners: Für eine rationale Zahl mit ist also

Geht p nur im Nenner des (vollständig gekürzten) Bruchs auf, ist also eine negative Zahl.

Die -Bewertung rationaler Zahlen spielt eine wichtige Rolle bei einer Konstruktionsart der p-adischen Zahlen: die Funktion

bildet auf den rationalen Zahlen einen nichtarchimedischen Betrag.

p-ganze und S-ganze Zahlen[Bearbeiten | Quelltext bearbeiten]

Eine -ganze Zahl (auch "-adisch ganze Zahl" oder "für ganze Zahl") ist eine rationale Zahl, die nichtnegative -Bewertung hat, d. h. bei der in einer vollständig gekürzten Bruchdarstellung der Nenner nicht durch teilbar ist. Rationale Zahlen, die nicht -ganz sind, werden manchmal auch "-gebrochen" genannt.

Die Menge aller -ganzen Zahlen ist ein Unterring von , der geschrieben wird. ist ein diskreter Bewertungsring, insbesondere gibt es bis auf Assoziierte genau ein irreduzibles Element, nämlich .

Ist allgemeiner eine Menge von Primzahlen, so ist eine -ganze Zahl eine rationale Zahl, die -ganz für jedes ist (!), d.h. bei der in einer vollständig gekürzten Bruchdarstellung der Nenner nur durch Primzahlen aus teilbar ist. Die Menge der -ganzen Zahlen bildet einen Unterring von .

Beispiele
  • Für ist .
  • Für eine Primzahl und ist , der diskrete Bewertungsring der -ganzen Zahlen.
  • Für ist der Ring der abbrechenden (durch eine endliche Ziffernfolge darstellbaren) Dezimalbrüche.

Diskrete Bewertungen[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Es sei ein Körper. Dann heißt eine surjektive Funktion

eine diskrete Bewertung, wenn die folgenden Eigenschaften erfüllt sind:

für alle . zusammen mit heißt diskret bewerteter Körper.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • die -Bewertung auf den rationalen Zahlen für eine Primzahl
  • die Nullstellen- bzw. Polordnung meromorpher Funktionen in einem festen Punkt

Diskrete Bewertungen und diskrete Bewertungsringe[Bearbeiten | Quelltext bearbeiten]

Die Teilmenge

bildet einen Unterring von , den Bewertungsring von . Er ist ein diskreter Bewertungsring mit einem maximalen Ideal , welches Hauptideal ist.

Ist umgekehrt ein diskreter Bewertungsring, so ist durch

eine diskrete Bewertung auf dem Quotientenkörper von definiert.

Diskrete Bewertungsringe und diskret bewertete Körper entsprechen einander.

Allgemeine Bewertungen[Bearbeiten | Quelltext bearbeiten]

Definition[Bearbeiten | Quelltext bearbeiten]

Ist eine totalgeordnete abelsche Gruppe und ein (kommutativer) Körper, so ist eine Abbildung

eine Bewertung, wenn die folgenden Eigenschaften erfüllt sind:

für alle .

heißt dann auch ein bewerteter Körper mit Wertegruppe .

Bewertungen und Bewertungsringe[Bearbeiten | Quelltext bearbeiten]

Ein Integritätsbereich heißt Bewertungsring, wenn er die folgende Eigenschaft hat:

Für jedes Element des Quotientenkörpers von gilt oder .

Ist ein Bewertungsring mit Quotientenkörper , so kann man eine Bewertung auf mit Wertegruppe definieren:

dabei bezeichnet das Bild von in ; die Ordnung auf ist definiert durch

für

Ist umgekehrt ein bewerteter Körper mit Bewertung , so ist

ein Bewertungsring, der dann auch der Bewertungsring zur Bewertung genannt wird. Die Gruppe ist kanonisch isomorph zur Wertegruppe von .

Für einen Körper gibt es also eine bijektive Beziehung zwischen Isomorphieklassen von Bewertungen auf und Bewertungsringen, die in enthalten sind.

Literatur[Bearbeiten | Quelltext bearbeiten]