Biolumineszenz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Großer Leuchtkäfer (Lampyris noctiluca)

Als Biolumineszenz (griechisch βιός biós ‚Leben‘ und lateinisch lumen ‚Licht‘) wird in der Biologie die Fähigkeit von Lebewesen bezeichnet, selbst oder mit Hilfe von Symbionten Licht zu erzeugen. Die Erzeugung des Lichtes findet bei höher organisierten Organismen oft in speziellen Leuchtorganen statt, bei eukaryotischen Einzellern in besonderen Organellen und bei Bakterien im Cytoplasma. Sie basiert auf chemischen Prozessen, bei denen freiwerdende Energie in Form von Licht abgegeben wird, es handelt sich also um eine Chemilumineszenz. Unterschieden wird bei der Biolumineszenz zwischen primärem und sekundärem Leuchten. Den Regelfall stellt das primäre Leuchten dar, bei dem ein Tier zum Selbstleuchten in der Lage ist. Entsteht das Leuchten stattdessen durch symbiontische Bakterien, wie z. B. von Fischen bekannt, spricht man vom sekundären Leuchten.

Biologische Funktion[Bearbeiten | Quelltext bearbeiten]

Biolumineszenz kann verschiedene Funktionen haben:

  • Anlocken von Beute oder Partnern
  • Kommunikation
  • Warn- oder Drohfunktion
  • Abschreckungs- oder Ablenkungsfunktion
  • Tarnung durch die Anpassung des eigenen Lichts an das Licht der Umgebung

Verbreitung[Bearbeiten | Quelltext bearbeiten]

In fast allen Reichen der Organismen gibt es biolumineszierende Arten, jedoch nicht unter höheren Pflanzen und Landwirbeltieren.

Verbreitung der Biolumineszenz
Reich primäres oder sekundäres Leuchten
Tiere (mehrere Stämme) primäres Leuchten (bei Wirbeltieren nur sekundäres Leuchten)
Pilze (wenige Arten) primäres Leuchten
höhere Pflanzen kein Leuchten
Einzeller (einige) primäres Leuchten
Bakterien (wenige) primäres Leuchten

Tiere[Bearbeiten | Quelltext bearbeiten]

Photinus pyralis beim Flug

Insekten mit Biolumineszenz sind zum Beispiel Leuchtkäfer (Glühwürmchen; Lampyridae) und Leuchtschnellkäfer (Gattungen Cucujo und Pyrophorus). Es gibt auch leuchtende Collembolen (Springschwänze).

Leuchtorgane des Tiefseefisches Photostomias guernei (hinter dem Auge)

Besonders verbreitet ist Lumineszenz unter Meeresbewohnern, vor allem in der Tiefsee (bis zu 90 Prozent der Tiefseeorganismen), aber auch in Küstengewässern (etwa fünf Prozent). Verschiedene Kopffüßer wie der Vampirtintenfisch (Vampyroteuthis infernalis), die Wunderlampen (Lycoteuthis) und andere Kalmare (Teuthida), Leuchtgarnelen (Krill, Euphausiacea), Leuchtquallen (Leuchtqualle Pelagia noctiluca, Aequorea victoria, Kronenqualle Periphylla periphylla), Vielborster (Polychaeten) wie Eusyllis blomstrandi im Helgoländer Felswatt (Helgoland), der im Sand verborgen lebende Chaetopterus variopedatus und der freischwimmende Tomopteris helgolandica, Korallen wie Renilla reniformis und verschiedene Tiefseefische. Unter den Nacktkiemern (Nudibranchia), meereslebenden Nacktschnecken, gibt es ebenfalls mehrere biolumineszente Arten, wie z. B. Plocamopherus imperialis[1] und Phylliroe bucephalum.[2]

Pilze[Bearbeiten | Quelltext bearbeiten]

Mycena chlorophos im botanischen Garten von Hachijojima

Von über 100.000 untersuchten Pilzarten sind nur 71 biolumineszent. Dazu zählen der Honiggelbe Hallimasch (Armillaria mellea), der Leuchtende Ölbaumpilz (Omphalotus olearius) und einige Arten der Gattungen Zwergknäuelinge (Panellus, z.B. Panellus stipticus), Seitlinge (Pleurotus, z.B. Pleurotus japonicus) und Helmlinge (Mycena, z.B. Mycena citricolor, Mycena lux-coeli).[3]

Die Biolumineszenz entwickelte sich in vier Abstammungslinien. Es konnte gezeigt werden, dass die Biolumineszenzerscheinungen bei allen vier Abstammungslinien auf den gleichen Grundlagen beruhen.[4]

Einzeller[Bearbeiten | Quelltext bearbeiten]

Biolumineszenz von Dinoflagellaten, durch das Brechen der Wellen hervorgerufen

Das so genannte Meeresleuchten wird durch Plankton hervorgerufen, zum Beispiel von einzelligen Dinoflagellaten (Noctiluca scintillans), die auf Strömungsveränderungen mit der Aussendung von Licht reagieren. Meeresleuchten lässt sich an zahlreichen Küsten beobachten.

Bakterien[Bearbeiten | Quelltext bearbeiten]

Es gibt einige im Meerwasser freilebende Leuchtbakterien, die auch auf Lebensmitteln wie Fisch, Fleisch und Eiern zu finden sind. Hierzu gehören zum Beispiel Aliivibrio fischeri und Photobakterien. Aliivibrio fischeri vermehrt sich auf toten Salzwasserfischen und lässt sich leicht beobachten, wenn man einen toten, frischen Salzhering einige Zeit kühl aufbewahrt, der dann im Dunklen stellenweise leuchtet.

Außerdem gibt es symbiotisch lebende Leuchtbakterien, die in besonderen Organen von Meerestieren vorkommen; vor allem Angler- und Laternenfische leben in Symbiose mit Leuchtbakterien.

Erzeugung[Bearbeiten | Quelltext bearbeiten]

Es werden zwei Formen der Biolumineszenz unterschieden: das primäre und das sekundäre Leuchten. Als primäres Leuchten wird bezeichnet, wenn der Organismus die Lumineszenz selbst erzeugt. Als sekundäres Leuchten hingegen wird bezeichnet, wenn ein Organismus eine Symbiose mit anderen Lebewesen eingeht (etwa mit Leuchtbakterien), welche die Möglichkeit zum primären Leuchten besitzen.

Symbiosen[Bearbeiten | Quelltext bearbeiten]

Symbiosen von Tieren mit Leuchtbakterien kommen vor. Hier werden die Bakterien von ihren Wirten mit Nahrung und Sauerstoff versorgt und leben oft in speziellen Hauttaschen oder Körperpartien. Ein Beispiel sind die Tiefseeanglerfische.

Luciferin / Luciferase[Bearbeiten | Quelltext bearbeiten]

Eine häufig zur Biolumineszenz genutzte chemische Reaktion ist die exergone Oxidation von Luciferinen mit molekularem Sauerstoff (O2), katalysiert durch Enzyme der Luciferasen. Dabei entstehen Dioxetane bzw. Dioxetanone, die unter Abgabe von Kohlenstoffdioxid zerfallen und die gespeicherte Energie in Form von Licht freisetzen.

Sowohl die Luciferine als auch die Luciferasen sind art- oder gruppenspezifisch, also für jede Organismengruppe kennzeichnend. Dabei sind die Luciferasen offensichtlich im Laufe der Evolution aus anderen Enzymen, den Oxygenasen, hervorgegangen. Bei der Veränderung, meistens der Abspaltung von Teilgruppen an dem Luciferin, entsteht Energie, die als Lichtquant abgegeben wird.

Aequorin / Coelenterazin / Coelenteramid[Bearbeiten | Quelltext bearbeiten]

Aequorin katalysiert die Oxidation von Coelenterazin (links) zu Coelenteramid; beim Zerfall einer energiereichen Zwischenstufe entsteht Licht.

Eine andere Art der Lichterzeugung, nämlich durch Photoproteine, verwendet die Qualle Aequorea victoria. Dieser Coelenterat (Hohltier) verwendet Aequorin, ein Ca2+-abhängiges primäres Photoprotein. Da es im Laufe der Reaktion nicht wie andere Luciferine chemisch umgewandelt wird, sondern nach der Emission des Lichts in seinen Ausgangszustand zurückgelangt, ist es unbegrenzt wiederverwertbar. Das blau-grüne Leuchten dieser Quallen entsteht durch die Kombination von Aequorin mit dem grün fluoreszierenden Protein (GFP).[5]

Foxfire-Biolumineszenz[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Foxfire (Biolumineszenz)

Pilze nutzen die Foxfire-Biolumineszenz, wobei das Enzym Superoxiddismutase (SOD) zur Erzeugung von Biolumineszenz führt.[3][6]

Anwendung[Bearbeiten | Quelltext bearbeiten]

Biolumineszenz ist nicht nur für die Grundlagenforschung von Interesse. Seit einiger Zeit werden verschiedene technische Anwendungen von Biolumineszenz routinemäßig eingesetzt. So wird Biolumineszenz etwa als risikoarme Markierungsmethode in der Molekularbiologie angewendet, die zusammen mit Fluoreszenz-Markierungen die Methode der radioaktiven Markierung weitgehend ersetzt hat. Auch als Nachweismethode in der Ökotoxikologie wird Biolumineszenz zum Nachweis und der Quantifizierung von Toxinen verwendet. Die Verwendung von Dinoflagellaten in der Strömungsforschung zum Nachweis von Turbulenzen wird diskutiert. Einige Forscher kündigen bereits selbstleuchtende Monitore auf Basis von Biolumineszenz an.

1999 berichteten britische Zeitungen – und anschließend Medien in anderen Ländern – über angebliche Arbeiten an selbst leuchtenden Weihnachtsbäumen.[7] Diese hat es allerdings nie gegeben.[8]

In jüngster Vergangenheit ist es den Bio-Ingenieuren des US-amerikanischen Unternehmens BioGlow gelungen, mit Hilfe von Genmanipulation und biolumineszierenden Enzymen eine autolumineszente Pflanze zu züchten. Ziel der Entwicklung war es, eine saubere, nachhaltige und bezahlbare pflanzliche Alternative für Lichtquellen zu generieren. Erzielt wird diese neue Eigenschaft der Pflanze dadurch, dass in das Chloroplastengenom der Ziertabak-Art Nicotiana alata marine Bakterien integriert wurden. Diese produzieren im Rahmen ihres induzierten Stoffwechsels auf natürlichem Weg Licht.[9]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Osamu Shimomura: Bioluminescence. Chemical Principles and Methods. Word Scientific Publishing Company, New Jersey 2006, ISBN 981-256-801-8.
  • E. A. Widder: Bioluminescence in the ocean. Origins of biological, chemical, and ecological diversity. In: Science. Band 328, Nr. 5979, 7. Mai 2010, S. 704–708, doi:10.1126/science.1174269, PMID 20448176.
  • Aldo Roda (Hrsg.): Chemiluminescence and Bioluminescence. Past, Present and Future. RSC Publishing, Cambridge 2011, ISBN 978-1-84755-812-1.
  • Thérèse Wilson, J. Woodland Hastings: Bioluminescence. Living Lights, Lights for Living. Harvard University Press, Cambridge (Massachusetts) 2013, ISBN 978-0-674-06716-5.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Bill Rudman: Plocamopherus imperialis. In: seaslugforum.net. Australian Museum, Sydney, 21. Dezember 1998, abgerufen am 17. Juli 2016.
  2. Bill Rudman: Phylliroe bucephalum. In: seaslugforum.net. Australian Museum, Sydney, 9. August 2000, abgerufen am 17. Juli 2016.
  3. a b Osamu Shimomura: The role of superoxide dismutase in regulating the light emission of luminescent fungi. In: Journal of Experimental Botany. Band 43, Nr. 11, 1992, S. 1519–1525, doi:10.1093/jxb/43.11.1519.
  4. Anderson G. Oliveira, Dennis E. Desjardin, Brian A. Perry, Cassius V. Stevani: Evidence that a single bioluminescent system is shared by all known bioluminescent fungal lineages. In: Photochemical & Photobiological Sciences. Band 11, Nr. 5, 2012, S. 848–852, doi:10.1039/C2PP25032B.
  5. Jonathan M. Kendall, Michael N. Badminton: Aequorea victoria bioluminescence moves into an exciting new era. In: Trends in Biotechnology. Band 16, Nr. 5, Mai 1998, S. 216–224, doi:10.1016/S0167-7799(98)01184-6, PMID 9621461.
  6. Dennis E. Desjardin, Anderson G. Oliveira, Cassius V. Stevani: Fungi bioluminescence revisited. In: Photochemical & Photobiological Sciences. Band 7, Nr. 2, Januar 2008, S. 170–182, doi:10.1039/B713328F.
  7. Genetically modified Christmas tree would glow. In: BBC News. 25. Oktober 1999, abgerufen am 17. Juli 2016.
  8. Marcel Robischon: Green Glow and Fantasy. Stories of Genetically engineered Christmas Trees. In: Christmas Trees. Januar 2006, ISSN 0199-0217, OCLC 1711451, S. 23–26.
  9. Starlight Avatar. BioGlow, archiviert vom Original am 14. April 2016, abgerufen am 17. Juli 2016.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Biolumineszenz – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
 Commons: Bioluminescence – Sammlung von Bildern, Videos und Audiodateien