Chicxulub-Krater

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Koordinaten: 21° 17′ 50″ N, 89° 35′ 40″ W

Karte: Mexiko
marker
Chicxulub-Krater
Der Chicxulub-Krater
Der Chicxulub-Krater nach Messungen der Schwereanomalie. Die weißen Punkte markieren die Lage der vielen Cenoten, die sich wie Perlen entlang des äußeren Kraterrings reihen.

Der Chicxulub-Krater (nach dem Dorf Chicxulub, von Mayathan Ch’ik Xulub, Aussprache: [tʃikʃuˈlub], ch’ik „Floh, Zecke“, xulub’ „Teufel, Dämon, Horn“)[1] ist ein 66 Millionen Jahre alter Einschlagkrater mit ca. 180 km Durchmesser im Untergrund im Norden der Halbinsel Yucatán in Mittelamerika (Mexiko). Da er unter mächtigen Sedimentgesteinen begraben und nicht erodiert ist, zählt er zu den besterhaltenen großen Einschlagkratern der Erde. Im Zusammenhang mit der Kreide-Paläogen-Grenze wird er mit dem Aussterben der Dinosaurier und eines großen Teils der mesozoischen Tier- und Pflanzenwelt während des Übergangs zum Känozoikum in Verbindung gebracht.

Lage, Größe und Identifizierung des Kraters[Bearbeiten | Quelltext bearbeiten]

Das Zentrum des Chicxulub-Kraters liegt an der yukatekischen Küste, ungefähr unter der namengebenden Ortschaft Chicxulub Puerto, nördlich von Mérida. Während sich der Südteil der Impaktstruktur im Gebiet des Bundesstaates Yucatán befindet, erstreckt sich ihr nördlicher Bereich bis in den Golf von Mexiko. Vom Rand des Kraters hin zu dessen Zentrum steigt die Mächtigkeit der darüber abgelagerten känozoischen Sedimentschichten von etwa 300 auf 1000 Meter.

Der Krater wurde mittels der Vermessung von magnetischen und gravitativen Anomalien im Jahr 1991 nachgewiesen und eindeutig als Impaktkrater identifiziert.[2] Er bildet ein nahezu kreisförmiges, etwa 180 km durchmessendes Becken mit Zentralberg und innerer Ringstruktur. Die festgestellten Gravitationsanomalien führten zu der Annahme, dass der Krater mindestens drei Ringe und vermutlich noch einen zusätzlichen äußeren Ring mit ca. 300 km Durchmesser besitzt.[3] Da das Größenverhältnis von einem Impaktor zum erzeugten Einschlagkrater meistens zwischen 1:10 und 1:20 liegt, dürfte der Durchmesser des damaligen Asteroiden oder Kometen etwa 10 bis 15 km betragen haben.

An der Oberfläche ist von diesem drittgrößten Impaktkrater der Erde wenig zu bemerken, da der Norden von Yucatán sehr flach ist. Allerdings haben Untersuchungen gezeigt, dass leichte Bodenerhebungen nahezu halbkreisförmige Strukturen bilden und die Stärke der tropischen Bodenbildung ebenfalls den früheren Krater nachzeichnet.[4] Außerdem existiert bei einem Radius von etwa 83 km (Durchmesser von 166 km) eine konzentrische, perlschnurartige Aufreihung der für dieses Karstgebiet typischen Cenoten.[5] Die Daten der Shuttle Radar Topography Mission zeigen ebenfalls eine deutliche halbkreisförmige Topographie im Bereich der Impaktstruktur.[6][7]

Erforschung des Chicxulub-Kraters[Bearbeiten | Quelltext bearbeiten]

Die Bedeckung des Chicxulub-Einschlagkraters mit mächtigen jüngeren Sedimentgesteinen hat nicht nur dessen Entdeckung verzögert, sondern erschwert auch seine Erforschung und macht geologische Kernbohrungen extrem kostenintensiv.

Forschungsgeschichte[Bearbeiten | Quelltext bearbeiten]

Die Entdeckungsgeschichte des Chicxulub-Kraters begann in den 1940er Jahren, als Geophysiker der staatlichen mexikanischen Erdölgesellschaft PEMEX während einer flugzeuggestützten Sondierung im Gebiet von Mérida eine ungewöhnliche gravitative und magnetische Anomalie feststellten. In der Hoffnung, auf eine Erdöllagerstätte zu stoßen, fanden in den 1950er Jahren mehrere Bohrungen statt, die zwar kein Erdöl, aber für die Yucatán-Plattform untypische, Andesit-ähnliche Gesteine zu Tage förderten. Da die meisten Geologen mit dem Phänomen von Einschlagkratern zu jener Zeit nicht vertraut waren, wurde in der ersten international zugänglichen Bestandsaufnahme von López Ramos (1975) die Untergrundstruktur als Vulkan gedeutet, der in die Sedimentgesteine der Kreide eingedrungen sei. Die Geophysiker Penfield und Camargo äußerten 1981 auf einem geophysikalischen Kongress erstmals die Vermutung, es könnte sich hierbei um einen Meteoritenkrater handeln. Ihre Idee fand jedoch vorerst wenig Resonanz.

Computergenerierte Karte des Chicxulub-Kraters anhand der Schwereanomalien

In den späten 1970er Jahren arbeitete ein Forschungsteam der Universität Berkeley um den Physiker Luis Walter Alvarez und dessen Sohn, den Geologen Walter Alvarez, an der Magnetostratigraphie von Meeresablagerungen der Oberkreide und des Paläogens nahe der Ortschaft Gubbio in der mittelitalienischen Region Umbrien. In der dort besonders ausgeprägten Kreide-Paläogen-Grenzschicht fanden die Forscher einen ungewöhnlich hohen Anteil des auf der Erde normalerweise sehr seltenen und zumeist aus vulkanischen Quellen stammenden Edelmetalls Iridium. Die signifikante Iridium-Konzentration innerhalb des schmalen Zeitfensters der K-P-Grenze schloss vulkanische Einflüsse jedoch nahezu aus und führte zur Annahme eines großen Meteoriteneinschlags, der die irdische Biosphäre schwer belastet und zu einem globalen Artensterben geführt hatte.[8] Die „revolutionäre“ Hypothese von Vater und Sohn Alvarez wurde im Juni 1980 im Fachjournal Science publiziert und fand in den Geowissenschaften ein lebhaftes und lang anhaltendes Echo. Es folgte eine zehnjährige und zunächst ergebnislose Suche nach dem postulierten Einschlagkrater. Dessen Entdeckung geschah 1991, nachdem man festgestellt hatte, dass die Ablagerungen an der Kreide-Paläogen-Grenze im Gebiet des heutigen Golfs von Mexiko am mächtigsten waren und nachdem die seit Jahrzehnten existierenden Aufzeichnungen der mexikanischen Erdölgesellschaft einer umfassenden Analyse unterzogen wurden. Es ist eine Ironie dieses Wissenschaftskrimis (anschaulich in Walter Alvarez’ Buch T. Rex and the Crater of Doom beschrieben), dass die Probe des Yucatán-Andesits, an der sowohl der Nachweis der Impaktindikatoren[2] als auch die erste Altersdatierung des Kraters[9] gelang, jahrelang als Briefbeschwerer eines Geologen der Erdölgesellschaft PEMEX gedient hatte.

Geophysikalische Untersuchungen[Bearbeiten | Quelltext bearbeiten]

Um Rückschlüsse über die freigesetzte Energie des Meteoriteneinschlags zu gewinnen und den Aufprallwinkel sowie die Größe des Impaktors bestimmen zu können, mussten die Dimensionen und die Struktur des Kraters möglichst genau bekannt sein. Dies erforderte eine Vielzahl geophysikalischer Methoden wie Geomagnetik, Gravimetrie und Seismik. Während die erste Rekonstruktion des Chicxulub-Kraters vor allem anhand der Unterlagen von PEMEX erfolgte, konnten in den 1990er Jahren weitere geophysikalische Daten auf Grundlage der Landseismik durch das Institut für Geophysik der UNAM (Mexiko) gesammelt werden. Anfang 2005 wurden weitere seismische Messungen[10] an Bord der R/V Maurice Ewing im Golf von Mexiko durchgeführt und deren Ergebnisse anschließend auf wissenschaftlichen Tagungen und in der Fachliteratur präsentiert.

Bohrungen[Bearbeiten | Quelltext bearbeiten]

Die einzige Möglichkeit, die Impaktite des Chicxulub-Kraters direkt zu analysieren, sind technisch aufwändige und kostenintensive Bohrungen. Die in den 1950er- und 1960er-Jahren durchgeführten Bohrprojekte reichten zwar teilweise bis in 3500 Meter Tiefe, besitzen jedoch nur geringe geologische Relevanz, da sie zum Auffinden von Erdöllagerstätten konzipiert waren. Zudem gelten die meisten der damals sporadisch entnommenen Proben als verschollen. Daher initiierte die UNAM 1996 ein Flachbohrprogramm im Bundesstaat Yucatán, wobei aufgrund der geringen Bohrtiefe von maximal 800 Metern nur Impaktite der Auswurfmassen von außerhalb des eigentlichen Kraterbereichs geborgen wurden.

In einem Kooperationsprojekt unter Leitung des Internationalen Kontinentalen Tiefbohrprogramms am GeoForschungsZentrum Potsdam wurde 2002 das so genannte Chicxulub Scientific Drilling Project bei Yaxcopoil, südlich von Mérida, durchgeführt.[11] Die Kernbohrung Yaxcopoil-1 erreichte eine Tiefe von 1511 Metern und förderte einen nahezu vollständigen Bohrkern von känozoischen Sedimentgesteinen (0–795 m), verschiedene Lagen von Impaktiten innerhalb des Kraters (794–896 m) sowie eine Sequenz von Gesteinsschichten aus der Oberkreide, die vermutlich von einem in den Krater gerutschten Megablock des Untergrundes stammt (896–1511 m). Mehrere Forschergruppen untersuchten danach die gut erhaltenen Impaktite unter mehreren Aspekten. Erste Ergebnisse wurden 2004 in einem Sonderband der Fachzeitschrift Meteoritics & Planetary Science veröffentlicht.[12] Auf der Grundlage der bisher erzielten geophysikalischen Resultate sind weitere Tiefbohrungen im Chicxulub-Krater für 2016 geplant.[13] Die Aussichten, dabei Bruchstücke des Impaktors zu finden, sind allerdings extrem unwahrscheinlich, da dieser im Moment des Einschlags durch die enorme Energiefreisetzung nahezu restlos verdampfte.

Oberflächengesteine als Impaktzeugen[Bearbeiten | Quelltext bearbeiten]

In den letzten beiden Jahrzehnten wurden dem Meteoriteneinschlag zugeschriebene Sedimentgesteine im näheren und weiteren Kraterumkreis entdeckt. Neben zum Teil mehrere Meter mächtigen Ablagerungen im Südosten der USA, auf Haiti, Kuba und in Nordost- und Zentralmexiko waren es vor allem chaotische Brekzien im Südosten Mexikos und in Guatemala, die besondere Aufmerksamkeit erregten. Ein Beispiel hierfür sind die im Südosten von Yucatán entdeckten Kalksteinbrekzien, die mitunter Trümmerfragmente aus dem Kraterinneren enthalten.[4][6] Von der Analyse dieser zwischen 280 und 365 km Entfernung vom Kraterzentrum aufgefundenen Lockersedimente erhofft man sowohl genauere Daten über den Chicxulub-Krater als auch weitere Erkenntnisse im Hinblick auf das damalige Massenaussterben.

All diesen Sedimenten ist gemeinsam, dass sie, ebenso wie die Kratergesteine und die global nachweisbare Kreide-Paläogen-Grenzschicht, als Kurzzeitphänomene zu den so genannten Eventablagerungen zählen, wie sie innerhalb von Monaten, Tagen, Stunden oder sogar Minuten nach einem Impakt entstehen. Diese zeitlichen Größenordnungen liegen jenseits des herkömmlichen stratigraphischen und radiometrischen Auflösungsvermögens, sind jedoch zunehmend Forschungsgegenstand einer noch jungen wissenschaftlichen Disziplin, der Eventstratigraphie.

Der Chicxulub-Einschlag und das Massenaussterben an der Kreide-Paläogen-Grenze[Bearbeiten | Quelltext bearbeiten]

Die zeitliche Übereinstimmung der Iridium-Anomalie mit dem Aussterbeereignis an der K-P-Grenze war der Kernpunkt der Alvarez-Studie von 1980. Das Szenario erforderte einen Impaktkörper von mindestens 10 km Durchmesser, dessen schlagartig freigesetzte kinetische Energie eine weltweite Welle der Zerstörung auslöste, der etwa 70 bis 75 Prozent aller damaligen Arten zum Opfer fielen. Mit dem Chicxulub-Einschlag als Global Killer schien die Ursache für das Verschwinden der Dinosaurier und vieler anderer Lebensformen gefunden worden zu sein.

Während die Mehrheit der Geowissenschaftler diese Ansicht im Wesentlichen teilte, kritisierten andere zu Beginn der 2000er-Jahre, dass der Meteoriten-Impakt nicht die Rolle gespielt haben könne, die man ihm zwei Jahrzehnte lang zuschrieb. Entdeckungen von Impaktgläsern in älteren kreidezeitlichen Ablagerungen wurden als Indiz gedeutet, dass der Chicxulub-Krater bereits 300.000 Jahre vor der eigentlichen Kreide-Paläogen-Grenzschicht entstanden war und womöglich zu einer ganzen Serie von Meteoriteneinschlägen gehörte.[14] Das Massenaussterben wäre demnach nicht auf einen Meteoriten, sondern hauptsächlich auf die umfangreichen Flutbasalte des Dekkan-Trapps im heutigen Westindien zurückzuführen. Die vulkanischen Aktivitäten dieser so genannten Magmatischen Großprovinz mit erheblichen Ausgasungen von Kohlenstoff- und Schwefeldioxid im höheren Gigatonnenbereich über einen Zeitraum von mehreren Hunderttausend Jahren hätten ausgereicht, die irdische Biosphäre nachhaltig zu destabilieren.

Diese „Vordatierung“ stieß von Anfang an auf Kritik[15] und gilt angesichts der aktuellen Forschungsergebnisse als unwahrscheinlich. Der Einsatz modernster Datierungsmethoden mit sehr geringen Toleranzbereichen führte zu dem Resultat, dass Impaktereignis und Kreide-Paläogen-Grenze zeitlich präzise übereinstimmen.[16][17] Auch der dem Einschlag folgende Impaktwinter gilt inzwischen als faktisch gesichert.[18] In der Wissenschaft bestand bis vor kurzem größtenteils Einigkeit darüber, dass am Ende der Kreide die Biodiversität und die Stabilität der Ökosysteme im Schwinden begriffen waren. Inzwischen spricht eine zunehmende Anzahl von Indizien dafür, dass die ökologische Situation im späten Maastrichtium gefestigter war als lange Zeit angenommen und dass wenig auf ein „schleichendes“ Dekkan-Trapp-Aussterben vor der K-P-Grenze hindeutet.[19][20] Somit blieb es dem Chicxulub-Einschlag vorbehalten, zumindest den Anstoß für das Ende der mesozoischen Faunenwelt gegeben zu haben.[21]

Künstlerische Darstellung des Chicxulub-Einschlags

Das gegenwärtig wahrscheinlichste Szenario geht davon aus, dass vor 66,04 Millionen Jahren (± 32.000 Jahre) ein etwa 10 km großer Meteorit mit einer Geschwindigkeit von 20 bis 40 km/s in einem relativ flachen Winkel (etwa 45°) in einem tropischen Flachmeer einschlug und dort mit der Explosivkraft von mindestens 200 Millionen Hiroshima-Bomben detonierte. Der Impaktor schleuderte durch die Wucht der Explosion, die wahrscheinlich auf dem gesamten Erdball zu vernehmen war, einige tausend Kubikkilometer Carbonat- und Evaporitgestein über weite Strecken als glühende Ejekta bis in die Stratosphäre.[22] Während die meisten Bestandteile des Trümmerhagels wieder auf die Oberfläche zurückfielen, wurde ein kleinerer Teil durch die Wucht der Explosion aus dem Gravitationsfeld der Erde geschleudert. Neben den unmittelbaren Auswirkungen des Einschlags wie Megatsunamis, einer überschallschnellen Druck- und Hitzewelle sowie Erdbeben im Bereich der Stärke 11 oder 12 traten weltweit Flächenbrände auf, deren Ausdehnung und Dauer derzeit noch diskutiert wird.[23][24] Innerhalb weniger Tage verteilte sich in der gesamten Atmosphäre eine große Menge an Ruß und Aerosolen, die das Sonnenlicht über Monate hinweg absorbierten, einen globalen Temperatursturz herbeiführten und die Photosynthese der Pflanzen an Land und in den Meeren weitgehend zum Erliegen brachten.

Von der folgenden biologischen Krise waren die ozeanischen und festländischen Biotope gleichermaßen betroffen. Im Verlauf eines nicht genau zu definierenden Zeitraums starben außer den Dinosauriern auch die Ammoniten, fast alle kalkschalenbildenden Foraminiferen sowie in hohem Umfang viele Vogelarten aus.[25] Nach einer vermutlich mehrere Jahrzehnte dauernden Kältephase begann eine rasche, zu Hitzestress führende Erwärmung, bedingt durch Milliarden Tonnen Kohlenstoffdioxid, die der Einschlag infolge der Verdampfung ozeanischer Böden innerhalb von Sekunden freigesetzt hatte. Die Dauer des extremen Treibhauseffekts wird auf rund 50.000 Jahre geschätzt, ehe sich das Klima wahrscheinlich erst nach mehreren Hunderttausend Jahren endgültig stabilisierte.

Eine im April 2015 von mehreren bekannten Geowissenschaftlern vorgelegte Hypothese geht davon aus, dass aufgrund der Impaktenergie von 3×1023 Joule (nach einer anderen Berechnung 1×102̩4 Joule) und der dadurch ausgelösten tektonischen Schockwellen der lange „schwelende“ Dekkan-Trapp eine erhebliche Zunahme seiner Aktivität verzeichnete. Laut dieser Hypothese ist der geologisch kurzfristige, über Jahrtausende in das Paläogen reichende Ausstoß von 70 Prozent aller Dekkan-Trapp-Flutbasalte auf den Chicxulub-Einschlag zurückzuführen.[26] Dieses bisher wenig beachtete Szenario gewinnt in der wissenschaftlichen Diskussion zunehmend an Bedeutung.[27]

Populärwissenschaftliche Literatur[Bearbeiten | Quelltext bearbeiten]

  • Walter Alvarez: T. rex and the crater of doom, Princeton University Press 1997, Princeton, New Jersey.
  • Rüdiger Vaas: Der Tod kam aus dem All. Meteoriteneinschläge, Erdbahnkreuzer und der Untergang der Dinosaurier. Franckh-Kosmos Verlags-GmbH & Co., Stuttgart 1995. ISBN 3-440-07005-0
  • Kenneth J. Hsü: Die letzten Jahre der Dinosaurier. Birkhäuser, Basel 1990. ISBN 3-7643-2364-7

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Chicxulub – Album mit Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Victoria Bricker, A Dictionary of The Maya Language As Spoken in Hocaba, Yucatan
  2. a b Alan R. Hildebrand, Glen T. Penfield, David A. Kring, Mark Pilkington, Antonio Camargo, Stein B. Jacobsen, William V. Boynton: Chicxulub Crater: A possible Cretaceous/Tertiary boundary impact crater on the Yucatán Peninsula, Mexico. (PDF) In: Geology. 19, Nr. 9, September 1991, S. 867-871.(abgerufen am 10. Dezember 2015)
  3. Virgil L. Sharpton, Kevin Burke, Antonio Camargo-Zanoguera, Stuart A. Hall, D. Scott Lee1, Luis E. Marín, Gerardo Suáarez-Reynoso, Juan Manuel Quezada-Muñeton, Paul D. Spudis, Jaime Urrutia-Fucugauchi: Chicxulub Multiring Impact Basin: Size and Other Characteristics Derived from Gravity Analysis. (PDF) In: Science. 261, Nr. 5128, September 1993, S. 1564-1567. doi:10.1126/science.261.5128.1564.(abgerufen am 10. Dezember 2015)
  4. a b Kevin O. Pope, Adriana C. Ocampo, Gary L. Kinsland, Randy Smith: Surface expression of the Chicxulub crater. (html) In: Geology. 24, Nr. 6, Juni 1996, S. 527-530.(abgerufen am 10. Dezember 2015)
  5. Pope et al., 1991; Hildebrand et al., 1995
  6. a b Gary L. Kinsland, Kevin O. Pope, Manuel Hurtado Cardador, Gordon R. J. Cooper, Duncan R. Cowan, Michael Kobrick, Gary Sanchez: Topography over the Chicxulub impact crater from Shuttle Radar Topography Mission data. In Large Meteorite Impacts III. (PDF) In: Geological Society of America (GSA Paper 384). 2005, S. 141-146. doi:10.1130/0-8137-2384-1.141.(abgerufen am 10. Dezember 2015)
  7. PIA03381: Shaded Relief with Height as Color and Landsat, Yucatan Peninsula, Mexico, NASA-photojournal, Jet Propulsion Laboratory, Kalifornien, abgerufen am 14. Juni 2008
  8. L. W. Alvarez, W. Alvarez, F. Asaro, H. V. Michel: Extraterrestrial Cause for the Cretaceous-Tertiary Extinction. (PDF) In: Science. 208, Juni 1980, S. 1095–1108. (abgerufen am 24. November 2014)
  9. Swisher Swisher, José M. Grajales-Nishimura, Alessandro Montanari, Stanley V. Margolis, Philippe Claeys, Walter Alvarez, Paul Renne, Esteban Cedillo-Pardoa, Florentin J-M. R. Maurrasse, Garniss H. Curtis, Jan Smit, Michael O. McWilliams: Coeval 40Ar/39Ar Ages of 65.0 Million Years Ago from Chicxulub Crater Melt Rock and Cretaceous-Tertiary Boundary Tektites. (PDF) In: Science. 257, Nr. 5072, August 1992, S. 954-958. doi:10.1126/science.257.5072.954.(abgerufen am 11. Dezember 2015)
  10. Researching and Mapping the Chicxulub Impact Crater, University of Texas, Austin. Abgerufen am 14. Juni 2008
  11. Chicxulub Scientific Drilling Project. Abgerufen am 14. Juni 2008
  12. Meteoritics & Planetary Science, Volume 39, Issue 6 (Inhaltsverzeichnis bei Ingenta Connect)
  13. Bohrkerne aus der globalen Katastrophe derstandard.at, abgerufen am 7. April 2016
  14. G. Keller, T. Adatte, W. Stinnesbeck, M. Rebolledo-Vieyra, J. U. Fucugauchi, U. Kramar, Doris Stüben: Chicxulub impact predates the K-T boundary mass extinction. In: pnas. 101, Nr. 11, 2004, S. 3753–3758. doi:10.1073/pnas.0400396101.
  15. Peter Schulte: Comment on the paper „Chicxulub impact predates KT boundary: New evidence from Brazos, Texas“ by Keller et al. (2007). (PDF) In: Earth and Planetary Science Letters. Nr. 269, 2008, S. 614–620. (abgerufen am 17. November 2014)
  16. Paul R. Renne, Alan L. Deino, Frederik J. Hilgen, Klaudia F. Kuiper, Darren F. Mark, William S. Mitchell III, Leah E. Morgan, Roland Mundil, Jan Smit: Time Scales of Critical Events Around the Cretaceous-Paleogene Boundary. (PDF) In: Science. 339, Nr. 6120, Februar 2013, S. 684–687. doi:10.1126/science.1230492. (abgerufen am 20. November 2015)
  17. Robert Sanders: New evidence comet or asteroid impact was last straw for dinosaurs. In: UC Berkeley News Center, 7. Februar 2013.
  18. Johan Vellekoop, Appy Sluijs, Jan Smit, Stefan Schouten, Johan W. H. Weijers, Jaap S. Sinninghe Damsté, Henk Brinkhuis: Rapid short-term cooling following the Chicxulub impact at the Cretaceous-Paleogene boundary. In: pnas. 111, Nr. 21, Mai 2014. doi:10.1073/pnas.1319253111.
  19. Tyler R. Lyson, Antoine Bercovici, Stephen G. B. Chester, Eric J. Sargis, Dean Pearson, Walter G. Joyce: Dinosaur extinction: closing the ‘3 m gap’. (html) In: The Royal Society, Biology Letters. Juli 2011. doi:10.1098/rsbl.2011.0470.
  20. Zoltan Siki-Sava, Eric Buffetaut, Attila Ősi, Xabier Pereda-Suberbiola, Stephen L. Brusatte: Island life in the Cretaceous – faunal composition, biogeography, evolution, and extinction of land-living vertebrates on the Late Cretaceous European archipelago. (html) In: ZooKeys. 469, Januar 2015, S. 1–161. doi:10.3897/zookeys.469.8439.
  21. Stephen L. Brusatte, Richard J. Butler, Paul M. Barrett, Matthew T. Carrano, David C. Evans, Graeme T. Lloyd, Philip D. Mannion, Mark A. Norell, Daniel J. Peppe, Paul Upchurch, Thomas E. Williamson: The extinction of the dinosaurs. In: Biological Reviews, Cambridge Philosophical Society (Wiley Online Library). 90, Nr. 2, Mai 2015, S. 628–642. doi:10.1111/brv.12128.
  22. Douglas S. Robertson, Malcolm C. McKenna, Owen B. Toon, Sylvia Hope, Jason A. Lillegraven: Survival in the first hours of the Cenozoic. (PDF) In: Geological Society of America Bulletin. 116, Nr. 5/6, Mai/Juni 2004, S. 760–768. doi:10.1130/B25402. (abgerufen am 13. April 2015)
  23. Claire M. Belcher: Reigniting the Cretaceous-Palaeogene firestorm debate. (html) In: geology. 37, Nr. 12, 2009, S. 1147–1148. doi:10.1130/focus122009.1.
  24. Douglas S. Robertson, William M. Lewis, Peter M. Sheehan, Owen B. Toon: Reevaluation of the heat-fire hypothesis. In: Journal of Geophysical Research: Biogeoscience. 110, Nr. 1, März 2013, S. 329–336. doi:10.1002/jgrg.20018.
  25. Nicholas R. Longrich, Tim Tokaryk, Daniel J. Field: Mass extinction of birds at the Cretaceous-Paleogene (K-Pg) boundary. In: pnas. 108, Nr. 37, September 2011, S. 15253–15257. doi:10.1073/pnas.1110395108.
  26. Mark A. Richards, Walter Alvarez, Stephen Self, Leif Karlstrom, Paul R. Renne, Michael Manga, Courtney J. Sprain, Jan Smit, Loÿc Vanderkluysen, Sally A. Gibson: Triggering of the largest Deccan eruptions by the Chicxulub impact. (PDF) In: Geological Society of America Bulletin. April 2015. doi:10.1130/B31167.1. (abgerufen am 28. Juni 2015)
  27. Paul R. Renne, Courtney J. Sprain, Mark A. Richards, Stephen Self, Loÿc Vanderkluysen, Kanchan Pande: State shift in Deccan volcanism at the Cretaceous-Paleogene boundary, possibly induced by impact. (PDF) In: Science. 350, Nr. 6256, Oktober 2015, S. 76–78. doi:10.1126/science.aac7549. (abgerufen am 30. Oktober 2015)