Dirichletscher Approximationssatz

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der dirichletsche Approximationssatz, benannt nach Peter Gustav Lejeune Dirichlet, ist ein mathematischer Satz über die Qualität der Approximation (Annäherung) reeller Zahlen durch rationale Zahlen.

Der Satz lautet: Zu jedem und jedem existieren ein und ein , so dass

Dieser Satz kann mithilfe des Schubfachprinzips bewiesen werden.

Aus dem Satz folgt nach Division durch und Beachtung von , dass es zu jedem reellen unendlich viele Paare positiver ganzer Zahlen gibt, die

erfüllen. Für rationale Zahlen haben fast alle solche Approximationen die Form , interessant ist die Unendlichkeitsaussage also nur für irrationale Zahlen. Der Satz von Hurwitz verbessert die Ungleichung noch um den Faktor .

Beispiel: Sei und . Dann ist nach dem dirichletschen Approximationssatz (mindestens) eine der Zahlen um höchstens von einer ganzen Zahl entfernt. Tatsächlich ist

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Hans Rademacher, Otto Toeplitz: Von Zahlen und Figuren, Kapitel 15: „Annäherung irrationaler Zahlen durch rationale“, Springer 1930 und zahlreiche Neuauflagen.