Einsteinsche Mannigfaltigkeit

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Einsteinsche Mannigfaltigkeit oder Einsteinmannigfaltigkeit ist ein Begriff aus dem mathematischen Teilgebiet der Differentialgeometrie sowie aus der allgemeinen Relativitätstheorie. Es handelt sich um einen Spezialfall einer (pseudo-)riemannschen Mannigfaltigkeit und wurde nach dem Physiker Albert Einstein benannt.

Definition[Bearbeiten | Quelltext bearbeiten]

Eine pseudo-riemannsche Mannigfaltigkeit heißt Einsteinmannigfaltigkeit, falls eine reelle Konstante existiert, so dass

gilt. Dabei ist der (0,2)-Ricci-Tensor und für jedes Die pseudo-riemannsche Metrik heißt unter diesen Gegebenheiten Einsteinmetrik.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Einsteinsche Mannigfaltigkeiten sind nur für Dimensionen von eigenständigem Interesse, da sie für und mit den Räumen mit konstanter Skalarkrümmung beziehungsweise konstanter Schnittkrümmung zusammenfallen.
  • Sei Dann ist eine n-dimensionale pseudo-riemannsche Mannigfaltigkeit einsteinsch genau dann, wenn für jedes eine Konstante (in Abhängigkeit von ) existiert, so dass
gilt. Im Unterschied zur Definition ist hier vom Punkt der Mannigfaltigkeit abhängig.
  • Das kartesische Produkt zweier Einsteinmannigfaltigkeiten, welche beide die gleiche Konstante haben, ist wieder eine Einsteinmannigfaltigkeit mit Konstante .
mit der kosmologischen Konstante und der Skalarkrümmung ist. Durch Spurbildung in der Gleichung erhält man
dabei bezeichnet die Dimension der Mannigfaltigkeit.

Literatur[Bearbeiten | Quelltext bearbeiten]