Elektrischer Leitwert

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Physikalische Größe
Name Elektrischer Leitwert
Formelzeichen der Größe G
Größen- und
Einheitensystem
Einheit Dimension
SI S I2·T3·M−1·L−2
Anglo-
amerikanisch
Mho (\mho) I2·T3·M−1·L−2
Siehe auch: spezifischer Widerstand, Elektrische Leitfähigkeit

Der elektrische Leitwert, in der komplexen Wechselstromrechnung auch Wirkleitwert oder Konduktanz genannt, ist der Kehrwert des elektrischen Widerstandes und damit die Kenngröße eines elektrischen Bauteils. Er ist nicht zu verwechseln mit der elektrischen Leitfähigkeit, einer Materialkonstante. Sein Formelzeichen ist G, seine Maßeinheit: S (Siemens).

 G = \frac 1R =\frac IU

Die physikalische Größe Leitwert kann jederzeit aus den Werten der Stromstärke I und Spannung U bzw. dem elektrischen Widerstand R eines konkreten Bauteils errechnet werden.

Wenn ein Verbraucher Strom gut leitet, so hat er einen hohen Leitwert und einen geringen Widerstand. Der Leitwert eines Körpers hängt ab von seinen geometrischen Abmessungen und einer materialspezifischen Konstante, der elektrischen Leitfähigkeit. Diese ist der Kehrwert des spezifischen Widerstandes. Das Formelzeichen der Leitfähigkeit ist \scriptstyle \gamma, auch \scriptstyle \sigma,\ \varkappa[1](Gamma, Sigma, Kappa, Griechische Buchstaben). Angegeben wird sie typischerweise in der Einheit [\kappa] = S/m = 10−6 S·m·mm−2.

Bezeichnungen[Bearbeiten]

Die veraltete Bezeichnung Mho (Ohm rückwärts gelesen; Einheitenzeichen \mho) für das Siemens wird im angloamerikanischen Sprachraum oft im Bereich der Elektronik verwendet.

Analog ist in der komplexen Wechselstromrechnung der komplexen Leitwert (Admittanz) als Kehrwert des komplexen Widerstandes (Impedanz) definiert. Der Realteil des komplexen Leitwerts wird Wirkleitwert (Konduktanz) genannt, der Imaginärteil Blindleitwert (Suszeptanz). Diese beiden Werte entsprechen im Allgemeinen jedoch nicht den Kehrwerten von Wirkwiderstand (Resistanz) und Blindwiderstand (Reaktanz).

Geometrische Abmessungen[Bearbeiten]

Für einen in Längsrichtung durchflossenen geraden Leiter mit konstanter Querschnittsfläche A und der Länge l gilt:

G=\kappa\cdot\frac Al

Für Flüssigkeiten ist der Zusammenhang zwischen Leitwert und Leitfähigkeit durch die Ausbildung der Messzelle gegeben. Dann gilt

G=\kappa\cdot\text{konst}

Meist haben Leitfähigkeits-Messzellen die Konstante konst = 1,00 cm. Dies ist bei älteren Leitfähigkeitsmessgeräten (genauer Leitwertmesser) zu beachten, deren Skalen in Siemens (S), Millisiemens (mS), Mikrosiemens (μS) bzw. Nanosiemens (nS) beschriftet sind, mit denen aber tatsächlich Leitfähigkeiten gemessen werden. Schließt man an solche Leitwertmesser einen elektrischen Widerstand an, so wird direkt der Leitwert angezeigt. Mit einer angeschlossenen Flüssigkeits-Messzelle messen diese älteren Geräte dann aber Leitfähigkeiten.

Alte Definition[Bearbeiten]

In den ersten Sicherheitsvorschriften für elektrische Starkstromanlagen vom 23. November 1896, herausgegeben vom Verband Deutscher Elektrotechniker wurde in Abschnitt II, § 4 wörtlich noch etwas eigenartig wie folgt definiert: „Stromleitungen aus Kupfer sollen ein solches Leitungsvermögen besitzen, dass 55 Meter eines Drahtes von 1 Quadratmillimeter Querschnitt bei 15° C<!-sic--> einen Widerstand von nicht mehr als 1 Ohm haben“.[2]

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. DIN 1304-1, Formelzeichen
  2.  Budde: Elektrotechnische Zeitschrift. Julius Springer, Berlin 1896, S. 22 ff.