Dies ist ein als exzellent ausgezeichneter Artikel.

Differentialrechnung

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Erste Ableitung)
Zur Navigation springen Zur Suche springen
Graph einer Funktion (blau) und einer Tangente an den Graphen (rot). Die Steigung der Tangente ist die Ableitung der Funktion an dem markierten Punkt.

Die Differential- bzw. Differenzialrechnung ist ein wesentlicher Bestandteil der Analysis und damit ein Gebiet der Mathematik. Zentrales Thema der Differentialrechnung ist die Berechnung lokaler Veränderungen von Funktionen. Während eine Funktion ihren Eingabewerten nach tabellarischem Prinzip gewisse Ausgangswerte zuordnet, wird durch die Differentialrechnung ermittelt, wie stark sich die Ausgabewerte nach sehr kleinen Veränderungen der Eingabewerte ändern. Sie ist eng verwandt mit der Integralrechnung, mit der sie gemeinsam unter der Bezeichnung Infinitesimalrechnung zusammengefasst wird.

Hierzu dienlich und gleichzeitig Grundbegriff der Differentialrechnung ist die Ableitung einer Funktion, auch Differentialquotient genannt, deren geometrische Entsprechung die Tangentensteigung ist. Die Ableitung ist nach der Vorstellung von Leibniz der Proportionalitätsfaktor zwischen infinitesimalen Änderungen des Eingabewertes und den daraus resultierenden, ebenfalls infinitesimalen Änderungen des Funktionswertes. Wird beispielsweise nach Zunahme der Eingabe um eine sehr kleine Einheit die Ausgabe der Funktion um nahezu zwei Einheiten erhöht, so ist von einer Ableitung des Wertes 2 (= 2 Einheiten / 1 Einheit) auszugehen. Eine Funktion wird als differenzierbar bezeichnet, wenn ein solcher Proportionalitätsfaktor existiert. Äquivalent wird die Ableitung in einem Punkt als die Steigung derjenigen linearen Funktion definiert, die unter allen linearen Funktionen die Änderung der Funktion am betrachteten Punkt lokal am besten approximiert. Entsprechend wird die Ableitung auch die Linearisierung der Funktion genannt. Die Linearisierung einer möglicherweise komplizierten Funktion zur Bestimmung deren Veränderungsrate hat den Vorteil, dass lineare Funktionen besonders einfache Eigenschaften haben.

In vielen Fällen ist die Differentialrechnung ein unverzichtbares Hilfsmittel zur Bildung mathematischer Modelle, die die Wirklichkeit möglichst genau abbilden sollen, sowie zu deren nachfolgender Analyse. Die Entsprechung der Ableitung im untersuchten Sachverhalt ist häufig die momentane Änderungsrate. So ist beispielsweise die Ableitung der Orts- bzw. Weg-Zeit-Funktion eines Teilchens nach der Zeit seine Momentangeschwindigkeit und die Ableitung der Momentangeschwindigkeit nach der Zeit liefert die momentane Beschleunigung. In den Wirtschaftswissenschaften spricht man auch häufig von Grenzraten anstelle der Ableitung, z. B. Grenzkosten, Grenzproduktivität eines Produktionsfaktors etc.

Dieser Artikel erklärt außerdem die mathematischen Begriffe: Differenzenquotient, Differentialquotient, Differentiation, stetig differenzierbar, glatt, partielle Ableitung, totale Ableitung.

In geometrischer Sprache ist die Ableitung eine verallgemeinerte Steigung. Der geometrische Begriff Steigung ist ursprünglich nur für lineare Funktionen definiert, deren Funktionsgraph eine Gerade ist. Die Ableitung einer beliebigen Funktion an einer Stelle definiert man als die Steigung der Tangente im Punkt des Graphen von .

In arithmetischer Sprache gibt die Ableitung einer Funktion für jedes an, wie groß der lineare Anteil der Änderung von ist (die Änderung 1. Ordnung), wenn sich um einen beliebig kleinen Betrag ändert. Für die exakte Formulierung dieses Sachverhalts wird der Begriff Grenzwert oder Limes verwendet.

Einführung anhand einfacher Grundlagen[Bearbeiten | Quelltext bearbeiten]

Heranführung anhand eines Beispiels[Bearbeiten | Quelltext bearbeiten]

Sich bewegenden Objekten, wie Autos, kann eine Zeit-Strecken-Funktion zugeordnet werden. In dieser ist tabellarisch verzeichnet, wie weit sich das Auto zu welchem Zeitpunkt bewegt hat. Die Ableitung dieser Funktion ordnet wiederum tabellarisch an, welche Geschwindigkeiten das Auto zu welchem Zeitpunkt hat, in etwa zum Zeitpunkt der Fotoaufnahme.
Bei Geschwindigkeitskontrollen werden momentane Geschwindigkeiten stark angenähert

Fährt ein Auto auf einer Straße, so kann anhand dieses Sachverhalts eine Tabelle erstellt werden, in der zu jedem Zeitpunkt die Strecke, die seit dem Beginn der Aufzeichnung zurückgelegt wurde, eingetragen wird. In der Praxis ist es zweckmäßig, eine solche Tabelle nicht zu engmaschig zu führen, d. h. zum Beispiel in einem Zeitraum von 1 Minute nur alle 3 Sekunden einen neuen Eintrag zu machen, was lediglich 20 Messungen erfordern würde. Jedoch kann eine solche Tabelle theoretisch beliebig engmaschig gestaltet werden, wenn jeder Zeitpunkt berücksichtigt werden soll. Dabei fließen die vormals diskreten, also mit einem Abstand behafteten Daten, in ein Kontinuum über. Die Gegenwart wird dann als Zeitpunkt, d. h. als ein unendlich kurzer Zeitabschnitt interpretiert. Gleichzeitig hat das Auto aber zu jedem Zeitpunkt eine theoretisch messbare exakte Strecke zurückgelegt, und wenn es nicht bis zum Stillstand abbremst oder gar zurück fährt, wird die Strecke kontinuierlich ansteigen, also zu keinem Zeitpunkt dieselbe sein wie zu einem anderen.

Die Motivation hinter dem Begriff der Ableitung einer Zeit-Strecken-Tabelle oder -Funktion ist es nun, angeben zu können, wie schnell sich das Auto zu einem gewissen gegenwärtigen Zeitpunkt bewegt. Aus einer Zeit-Strecke-Tabelle soll also die passende Zeit-Geschwindigkeit-Tabelle abgeleitet werden. Hintergrund ist, dass die Geschwindigkeit ein Maß dafür ist, wie stark sich die zurückgelegte Strecke im Laufe der Zeit ändern wird. Bei einer hohen Geschwindigkeit ist ein starker Anstieg in der Strecke zu sehen, während eine niedrige Geschwindigkeit zu wenig Veränderung führt. Da jedem Zeitpunkt auch eine Strecke zugeordnet wurde, sollte eine solche Analyse grundsätzlich möglich sein, denn mit dem Wissen über die zurückgelegte Strecke innerhalb eines Zeitraumes gilt für die Geschwindigkeit

Dies lässt sich präzisieren: Ist die unendlich große, kontinuierliche Zeit-Strecken-Tabelle des Autos, erstreckt über das reelle Intervall , dabei in der linken Zeit-Spalte in Sekunden und in der rechten Strecken-Spalte in Metern, so ergibt sich für „die Geschwindigkeit“ im Zeitraum bis Sekunden nach Aufzeichnungsbeginn

Meter pro Sekunde und allgemein zwischen den Zeitpunkten und , mit , nach Aufzeichnungsbeginn

Meter pro Sekunde. Die Differenzen in Zähler und Nenner müssen gebildet werden, da man sich nur für die innerhalb eines bestimmten Zeitraums zurückgelegte Strecke interessiert. Dennoch liefert dieser Ansatz kein vollständiges Bild, da zunächst nur Geschwindigkeiten für „echte Zeiträume“ gemessen wurden. Eine gegenwärtige Geschwindigkeit, vergleichbar mit einem Blitzerfoto, hingegen bezöge sich auf ein unendlich kurzes Zeitintervall. Ferner ist es sehr gut möglich, dass das Auto auch in sehr kurzen Intervallen noch seine Geschwindigkeit ändert, zum Beispiel bei einer Vollbremsung. Dementsprechend ist der obere Begriff der „Geschwindigkeit“ nicht zutreffend und muss durch „durchschnittliche Geschwindigkeit“ ersetzt werden.[1] Wird also mit echten Zeitintervallen, also diskreten Daten, gearbeitet, wird das Modell insofern vereinfacht, als sich das Auto innerhalb der betrachteten Intervalle, bis zur nächsten Korrektur, konstant schnell bewegt.

Soll hingegen zu einer „perfekt passenden“ Zeit-Geschwindigkeit-Tabelle übergegangen werden, so muss der Terminus „durchschnittliche Geschwindigkeit in einem Zeitintervall“ durch „Geschwindigkeit zu einem Zeitpunkt“ ersetzt werden. Dazu muss zunächst ein Zeitpunkt gewählt werden. Die Idee ist nun, „echte Zeitintervalle“ in einem Grenzwertprozess gegen ein unendlich kurzes Zeitintervall laufen zu lassen und zu studieren, was mit den betroffenen durchschnittlichen Geschwindigkeiten passiert. Obwohl der Nenner dabei gegen 0 strebt, ist dies anschaulich kein Problem, da sich das Auto in kürzer werdenden Zeitabschnitten bei stetigem Verlauf, also ohne Teleportation, immer weniger weit bewegen kann, womit sich Zähler und Nenner gleichzeitig verkleinern, und im Grenzprozess ein unbestimmter Term „“ entsteht. Dieser kann unter Umständen als Grenzwert Sinn machen, beispielsweise drücken

exakt die selben Geschwindigkeiten aus. Nun gibt es zwei Möglichkeiten beim Studium der Geschwindigkeiten. Entweder, sie lassen in dem betrachteten Grenzwertprozess keine Tendenz erkennen, sich einem bestimmten endlichen Wert anzunähern. In diesem Fall kann der Bewegung des Autos keine zum Zeitpunkt gültige Geschwindigkeit zugeordnet werden, d. h., der Term „“ hat hier keinen eindeutigen Sinn. Gibt es hingegen eine zunehmende Stabilisierung in Richtung eines festen Wertes, so existiert der Limes

und drückt exakt die im Zeitpunkt vorherrschende Geschwindigkeit des Autos aus. Der unbestimmte Term „“ nimmt in diesem Fall einen eindeutigen Wert an. Der dabei entstehende Zahlenwert wird auch als Ableitung von an der Stelle bezeichnet und für ihn wird häufig das Symbol benutzt.

Das Prinzip der Differentialrechnung[Bearbeiten | Quelltext bearbeiten]

Schaubild der Zeit-Strecke-Funktion (in Blau). Verstreicht eine Sekunde (in Rot), so nimmt die zurückgelegte Strecke um 2 Meter zu (in Orange). Daher bewegt sich das Auto mit „2 Meter pro Sekunde“. Die Geschwindigkeit entspricht genau der Steigung. Es ist zu beachten, dass sich das Steigungsdreieck beliebig verkleinern lässt, ohne dass sich an der Proportion von Höhe und Grundseite etwas ändert, es könnte also auch von „2 Nanometer pro Nanosekunde“ usw. gesprochen werden. Daher ist es auch sinnvoll, zu jedem Zeitpunkt von einer momentanen Geschwindigkeit von 2 Meter pro Sekunde zu sprechen.

Das Beispiel des letzten Abschnitts ist besonders einfach, wenn die Zunahme der Strecke des Autos mit der Zeit gleichförmig, also linear verläuft. Man spricht in diesem Falle auch von einer Proportionalität zwischen Zeit und Strecke, wenn zu Beginn der Aufzeichnung () noch keine Strecke zurückgelegt wurde (). Dies hat eine immer gleichbleibende Veränderung der Strecke in einem bestimmten Zeitintervall zur Folge, egal ab wann die Messung startet. Beispielsweise legt das Auto zwischen 0 und 1 die gleiche Strecke zurück wie zwischen 9 und 10 Sekunden. Nimmt man an, dass sich das Auto für jede verstrichene Sekunde 2 Meter weiter bewegt, so hat die Proportionalität zur Folge, dass es sich für jede halbe Sekunde nur um 1 Meter zurück legt usw. Allgemein gilt also , d. h., für jede weitere Zeiteinheit kommen zwei weitere Streckeneinheiten hinzu, womit die Veränderungsrate in jedem Punkt 2 „Meter pro (hinzukommende) Sekunde“ beträgt.

Ersetzt man für den allgemeineren Fall 2 durch eine beliebige Zahl , also , so kommen für jede verstrichene Zeiteinheit weitere Streckeneinheiten hinzu. Das ist schnell einzusehen, denn es gilt für die Streckendifferenz

Allgemein bewegt sich das Auto in Zeiteinheiten um insgesamt Streckeneinheiten vorwärts – seine Geschwindigkeit beträgt daher, im Falle der getroffenen Wahl von Metern und Sekunden, konstant „ Meter pro Sekunde“. Falls der Startwert nicht sondern beträgt, ändert dies nichts, da sich die Konstante in der oberen Differenz stets herauskürzt. Auch anschaulich ist dies vernünftig: Die Startposition des Autos sollte bei gleichförmiger Bewegung unerheblich für dessen Geschwindigkeit sein.

Es lässt sich also festhalten:

  • Lineare Funktionen. Für lineare Funktionen (man beachte, dass es keine Ursprungsgerade sein muss) ist der Ableitungsbegriff wie folgt erklärt. Hat die betrachtete Funktion die Gestalt , so hat die momentane Veränderungsrate in jedem Punkt den Wert , es gilt also für die zugehörige Ableitungsfunktion . Die Ableitung lässt sich aus den Daten also direkt ablesen. Insbesondere gilt: Jede konstante Funktion hat die Ableitung , da sich mit Abänderung der Eingabewerte nichts am Ausgabewert ändert. Das Maß der Veränderung beträgt also überall 0.

Mitunter deutlich schwieriger kann es werden, wenn eine Bewegung nicht gleichförmig verläuft. In diesem Falle sieht der Verlauf der Zeit-Strecken-Funktion ggf. ganz anders aus als eine Gerade. Aus der Beschaffenheit der Zeit-Strecken-Funktion lässt sich dann ablesen, dass die Bewegungsverläufe des Autos sehr vielseitig sind, was zum Beispiel mit Verkehrsampeln, Kurven, Staus und anderen Verkehrsteilnehmern zu tun haben kann. Da solche Arten von Verläufen besonders häufig in der Praxis anzutreffen sind, ist es zweckmäßig, den Ableitungsbegriff auch auf nicht-lineare Funktionen auszudehnen. Hier stößt man jedoch schnell auf das Problem, dass es auf den ersten Blick keinen klaren Proportionalitätsfaktor gibt, der genau die lokale Veränderungsrate ausdrückt. Die einzig mögliche Strategie sieht daher vor, eine Linearisierung der nicht-linearen Funktion vorzunehmen, um das Problem auf den einfachen Fall einer linearen Funktion zurückzuführen. Diese Technik der Linearisierung bildet den eigentlichen Kalkül der Differentialrechnung und ist in der Analysis von sehr großer Bedeutung, da sie dabei hilft, komplizierte Prozesse lokal auf sehr leicht verständliche Prozesse, nämlich lineare Vorgänge, zu reduzieren.[2]

Graphische Darstellung der Approximation von durch . Letztere ist die sog. Tangente von an der Stelle .

Die Strategie kann exemplarisch an der nicht-linearen Funktion erläutert werden. Die folgende Tabelle zeigt die Linearisierung der quadratischen Funktion an der Stelle 1.

0,5 0,75 0,99 0,999 1 1,001 1,01 1,1 2 3 4 100
0,25 0,5625 0,9801 0,998001 1 1,002001 1,0201 1,21 4 9 16 10000
0 0,5 0,98 0,998 1 1,002 1,02 1,2 3 5 7 199

Dass die Linearisierung nur ein lokales Phänomen ist, zeigt die größer werdende Abweichung der Funktionswerte bei entfernteren Eingabewerten. Die lineare Funktion ahmt das Verhalten von nahe der Eingabe 1 sehr gut nach (besser als jede andere lineare Funktion). Im Gegensatz zu hat man es bei jedoch einfach, die Veränderungsrate an der Stelle 1 zu interpretieren: Sie beträgt (wie überall) genau 2. Damit gilt .

Es lässt sich also festhalten:

  • Nicht-lineare Funktionen. Soll die momentane Veränderungsrate einer nicht-linearen Funktion in einem bestimmten Punkt ermittelt werden, so muss diese (wenn möglich) dort linearisiert werden. Anschließend ist die Steigung der approximativen linearen Funktion die lokale Veränderungsrate der betrachteten nicht-linearen Funktion, und es gilt die gleiche Anschauung wie bei Ableitungen linearer Funktionen. Insbesondere gilt, dass die Veränderungsraten einer nicht-linearen Funktion nicht konstant sind, sondern sich von Punkt zu Punkt ändern werden.

Die genaue Bestimmung der richtigen Linearisierung einer nicht-linearen Funktion an einer bestimmten Stelle ist zentrale Aufgabe des Kalküls der Differentialrechnung. Es geht um die Frage, ob sich aus einer Kurve wie berechnen lässt, welche lineare Funktion sie an einem gegebenen Punkt am besten annähert. Im Idealfall ist diese Berechnung sogar so allgemein, dass sie auf alle Punkte des Definitionsbereichs angewendet werden kann. Im Falle von kann gezeigt werden, dass an der Stelle die beste lineare Annäherung die Steigung besitzen muss. Mit der Zusatzinformation, dass die lineare Funktion die Kurve im Punkt schneiden muss, kann dann die vollständige Funktionsgleichung der approximierenden linearen Funktion ermittelt werden. In vielen Fällen reicht jedoch die Angabe der Steigung, also die Ableitung, aus.

Als Ansatzpunkt gilt die explizite Bestimmung des Grenzwerts des Differentialquotienten

woraus für sehr kleine h durch einfache Umformung der Ausdruck

hervorgeht. Die rechte Seite ist eine in lineare Funktion mit Steigung und ahmt in der Nähe von sehr gut nach. Bei einigen elementaren Funktionen wie Polynomfunktionen, trigonometrischen Funktionen, Exponentialfunktionen oder Logarithmusfunktionen kann durch diesen Grenzwertprozess eine Ableitungsfunktion bestimmt werden. Mit Hilfe sog. Ableitungsregeln kann dieser Prozess dann auf viele weitere Funktionen verallgemeinert werden, wie Summen, Produkte oder Verkettungen elementarer Funktionen wie der oben genannten. Exemplarisch: Ist und , so wird das Produkt durch das Produkt der linearen Funktionen angenähert: , und durch Ausmultiplizieren:

womit die Steigung von bei genau entspricht. Ferner helfen die Ableitungsregeln dabei, die mitunter aufwändigen Grenzwertbestimmungen durch einen „direkten Rechenkalkül“ zu ersetzen und damit den Ableitungsprozess zu vereinfachen. Aus diesem Grund werden Differentialquotienten in der Lehre zum fundamentalen Verständnis studiert und zum Beweisen der Ableitungsregeln verwendet, jedoch in der Rechenpraxis nicht angewendet. Alle genannten Verfahren werden in diesem Artikel beschrieben.

Exemplarische Berechnung der Ableitung[Bearbeiten | Quelltext bearbeiten]

Der Ansatz zur Ableitungsberechnung ist zunächst der Differenzenquotient. Dies kann exemplarisch an den Funktionen und vorgeführt werden.

Im Falle von hilft die binomische Formel . Damit ergibt sich

Im letzten Schritt wurde der Term in der Differenz absorbiert, und ein Faktor kürzte sich heraus. Strebt nun gegen 0, bleibt im Grenzwert von der „Sekantensteigung“ nur noch übrig – dies ist die gesuchte exakte Tangentensteigung . Generell verringert sich bei Polynomfunktionen durch Ableiten der Grad um Eins. Die Rechenregeln hierzu sind unten im Detail ausgeführt.

Ein anderer, wichtiger Funktionstyp sind Exponentialfunktionen, wie zum Beispiel . Für jeden Input werden hier Faktoren 10 miteinander multipliziert, zum Beispiel usw. Dies kann auch auf nicht-ganze Anzahlen verallgemeinert werden mittels „Spalten“ von Faktoren in Wurzeln (z. B. ). Exponentialfunktionen ist das charakteristische, wichtige funktionale Gesetz

gemein, das auf dem Prinzip beruht, dass das Produkt aus Faktoren 10 und Faktoren 10 aus Faktoren 10 besteht. Insbesondere existiert eine direkte Verbindung zwischen beliebigen Differenzen und durch

Dies löst bei der Ableitungsfunktion den wichtigen (und für Exponentialfunktionen eigentümlichen) Effekt aus, dass diese bis auf einen Faktor der abgeleiteten Funktion entsprechen muss:

Der Faktor, bis auf den Funktion und Ableitung gleich sind, ist die Ableitung im Punkt 0. Es muss streng genommen verifiziert werden, dass dieser überhaupt existiert. Wenn ja, ist bereits überall ableitbar.

Einordnung der Anwendungsmöglichkeiten[Bearbeiten | Quelltext bearbeiten]

Extremwertprobleme[Bearbeiten | Quelltext bearbeiten]

Eine wichtige Anwendung der Differentialrechnung besteht darin, dass mit Hilfe der Ableitung lokale Extremwerte einer Kurve bestimmt werden können. Anstatt also anhand einer Wertetabelle mechanisch nach Hoch- oder Tiefpunkten suchen zu müssen, liefert der Kalkül in einigen Fällen eine direkte Antwort. Liegt ein Hoch- oder Tiefpunkt vor, so besitzt die Kurve an dieser Stelle keinen „echten“ Anstieg, weshalb die optimale Linearisierung eine Steigung von 0 besitzt. Für die genaue Klassifizierung eines Extremwertes sind jedoch weitere lokale Daten der Kurve notwendig, denn eine Steigung von 0 ist nicht hinreichend für die Existenz eines Extremwertes (geschweige denn eines Hoch- oder Tiefpunktes).

In der Praxis treten Extremwertprobleme typischerweise dann auf, wenn Prozesse, zum Beispiel in der Wirtschaft, optimiert werden sollen. Oft liegen an den Randwerten jeweils ungünstige Ergebnisse, in Richtung „Mitte“ kommt es aber zu einer stetigen Steigerung, die dann irgendwo maximal werden muss. Zum Beispiel die optimale Wahl eines Verkaufspreises: Bei einem zu geringen Preis ist die Nachfrage nach einem Produkt zwar sehr groß, aber die Produktion kann nicht finanziert werden. Ist er andererseits zu hoch, so wird es im Extremfall gar nicht mehr gekauft. Daher liegt ein Optimum irgendwo „in der Mitte“. Voraussetzung dabei ist, dass der Zusammenhang in Form einer (stetig) differenzierbaren Funktion wiedergegeben werden kann.

Mathematische Modellierung[Bearbeiten | Quelltext bearbeiten]

In der mathematischen Modellierung sollen komplexe Probleme in mathematischer Sprache erfasst und analysiert werden. Je nach Fragestellung sind das Untersuchen von Korrelationen oder Kausalitäten oder auch das Geben von Prognosen im Rahmen dieses Modells zielführend.

Besonders im Umfeld sog. Differentialgleichungen ist die Differentialrechnung zentrales Werkzeug bei der Modellierung. Diese Gleichungen treten zum Beispiel auf, wenn es eine kausale Beziehung zwischen dem Bestand einer Größe und deren zeitlicher Veränderung gibt. Ein alltägliches Beispiel könnte sein:

Je mehr Einwohner eine Stadt besitzt, desto mehr Leute wollen dort hinziehen.

Etwas konkreter könnte dies zum Beispiel heißen, dass bei jetzigen Einwohnern durchschnittlich Personen in den kommenden 10 Jahren zuziehen werden, bei Einwohnern durchschnittlich Personen in den kommenden 10 Jahren usw. – um nicht alle Zahlen einzeln ausführen zu müssen: Leben Personen in der Stadt, so wollen so viele Menschen hinzuziehen, dass nach 10 Jahren weitere hinzukommen würden. Besteht eine derartige Kausalität zwischen Bestand und zeitlicher Veränderung, so kann gefragt werden, ob aus diesen Daten eine Prognose für die Einwohnerzahl nach 10 Jahren abgeleitet werden kann, wenn die Stadt im Jahr 2020 zum Beispiel Einwohner hatte. Es wäre dabei falsch zu glauben, dass dies sein werden, da sich mit steigender Einwohnerzahl auch die Nachfrage nach Wohnraum wiederum zunehmend steigern wird. Der Knackpunkt zum Verständnis des Zusammenhangs ist demnach erneut dessen Lokalität: Besitzt die Stadt Einwohner, so wollen zu diesem Zeitpunkt Menschen pro 10 Jahre hinzuziehen. Aber einen kurzen Augenblick später, wenn weitere Menschen hinzugezogen sind, sieht die Lage wieder anders aus. Wird dieses Phänomen zeitlich beliebig engmaschig gedacht, ergibt sich ein „differentieller“ Zusammenhang.

Mit Hilfe der Differentialrechnung kann aus so einem kausalen Zusammenhang zwischen Bestand und Veränderung in vielen Fällen ein Modell hergeleitet werden, was den komplexen Zusammenhang auflöst, und zwar in dem Sinne, dass zum Schluss eine Bestandsfunktion explizit angegeben werden kann. Setzt man in diese Funktion dann zum Beispiel den Wert 10 Jahre ein, so ergibt sich eine Prognose für die Stadtbewohneranzahl im Jahr 2030. Im Falle oberen Modells wird eine Bestandsfunktion gesucht mit , in 10 Jahren, und . Die Lösung ist dann

mit der natürlichen Exponentialfunktion (natürlich bedeutet, dass der Proportionalitätsfaktor zwischen Bestand und Veränderung einfach gleich 1 ist) und für das Jahr 2030 lautet die geschätzte Prognose Mio. Einwohner. Die Proportionalität zwischen Bestand und Veränderungsrate führt also zu exponentiellem Wachstum und ist klassisches Beispiel eines selbstverstärkenden Effektes. Analoge Modelle funktionieren beim Populationswachstum (Je mehr Individuen, desto mehr Geburten) oder der Verbreitung einer ansteckenden Krankheit (Je mehr Erkrankte, desto mehr Ansteckungen).

Numerische Verfahren[Bearbeiten | Quelltext bearbeiten]

Die Eigenschaft einer Funktion, differenzierbar zu sein, ist bei vielen Anwendungen von Vorteil, da dies der Funktion mehr Struktur verleiht. Ein Beispiel ist das Lösen von Gleichungen. Bei einigen mathematischen Anwendungen ist es notwendig, den Wert einer (oder mehrerer) Unbekannten zu finden, die Nullstelle einer Funktion ist. Es ist dann . Je nach Beschaffenheit von können Strategien entwickelt werden, eine Nullstelle zumindest näherungsweise anzugeben, was in der Praxis meist vollkommen ausreicht. Ist in jedem Punkt differenzierbar mit Ableitung , so kann in vielen Fällen das Newton-Verfahren helfen. Bei diesem spielt die Differentialrechnung insofern eine direkte Rolle, als beim schrittweisen Vorgehen immer wieder eine Ableitung explizit berechnet werden muss.

Ein weiterer Vorteil der Differentialrechnung ist, dass in vielen Fällen komplizierte Funktionen, wie Wurzeln oder auch Sinus und Kosinus, anhand einfacher Rechenregeln wie Addition und Multiplikation gut angenähert werden können. Ist die Funktion an einem benachbarten Wert leicht auszuwerten, ist dies von großem Nutzen. Wird zum Beispiel nach einem Näherungswert für die Zahl gesucht, so liefert die Differentialrechnung für die Linearisierung

denn es gilt nachweislich . Sowohl Funktion als auch erste Ableitung konnten an der Stelle gut berechnet werden, weil es sich dabei um eine Quadratzahl handelt. Einsetzen von ergibt , was mit dem exakten Ergebnis auf zwei Dezimalstellen übereinstimmt. Unter Einbezug höherer Ableitungen kann die Genauigkeit solcher Approximationen zusätzlich gesteigert werden, da dann nicht nur linear, sondern quadratisch, kubisch, usw. angenähert wird, siehe auch Taylor-Reihe.

Reine Mathematik[Bearbeiten | Quelltext bearbeiten]

Tangentialebene, platziert an einem Punkt einer Kugeloberfläche

Auch in der reinen Mathematik, also in der theoretischen Grundlagenforschung, spielt die Differentialrechnung als ein Kern der Analysis eine bedeutende Rolle. Ein Beispiel ist die sog. Differentialgeometrie, die sich mit Figuren beschäftigt, die eine differenzierbare Oberfläche (ohne Knicke usw.) haben. Zum Beispiel kann auf eine Kugeloberfläche in jedem Punkt tangential eine Ebene platziert werden. Anschaulich: Steht man zum Beispiel an einem Erdpunkt, so hat man das Gefühl, die Erde sei flach, wenn man seinen Blick in der Tangentialebene schweifen lässt. In Wahrheit ist die Erde jedoch nur lokal flach: Die angelegte Fläche dient der (durch Linearisierung) vereinfachten Darstellung der weitaus komplizierteren Krümmung. Global hat sie als Kugeloberfläche eine völlig andere Gestalt.

Die Methoden der Differentialgeometrie sind äußerst bedeutend für die theoretische Physik. So können Phänomene wie Krümmung oder Raumzeit über Methoden der Differentialrechnung beschrieben werden. Auch die Frage, was der kürzeste Abstand zwischen zwei Punkten auf einer gekrümmten Fläche (zum Beispiel der Erdoberfläche) ist, kann mit diesen Techniken formuliert und oft auch beantwortet werden.

Auch bei der Erforschung von Zahlen als solchen, also im Rahmen der Zahlentheorie, hat sich die Differentialrechnung in der analytischen Zahlentheorie bewährt. Die grundlegende Idee der analytischen Zahlentheorie ist die Umwandlung von bestimmten Zahlen, über die man etwas lernen möchte, in Funktionen. Haben diese Funktionen „gute Eigenschaften“ wie etwa Differenzierbarkeit, so hofft man, über die damit einhergehenden Strukturen Rückschlüsse auf die ursprünglichen Zahlen ziehen zu können. Es hat sich dabei häufig bewährt, zur Perfektionierung der Analysis von den reellen zu den komplexen Zahlen überzugehen (siehe auch komplexe Analysis), also die Funktionen über einem größeren Zahlenbereich zu studieren. Ein Beispiel ist die Analyse der Fibonacci-Zahlen , deren Bildungsgesetz vorschreibt, dass eine neue Zahl stets aus der Summe der beiden vorangehenden entstehen soll. Ansatz der analytischen Zahlentheorie ist die Bildung der erzeugenden Funktion

also eines „unendlich langen“ Polynoms (einer sog. Potenzreihe), dessen Koeffizienten genau die Fibonacci-Zahlen sind. Für hinreichend kleine Zahlen ist dieser Ausdruck sinnvoll, weil die Potenzen dann viel schneller gegen 0 gehen als die Fibonacci-Zahlen gegen Unendlich, womit sich langfristig alles bei einem endlichen Wert einpendelt. Es ist für diese Werte möglich, die Funktion explizit zu berechnen durch

Das Nennerpolynom „spiegelt“ dabei genau das Verhalten der Fibonacci-Zahlen „wider“ – es ergibt sich in der Tat durch termweises Verrechnen. Mit Hilfe der Differentialrechnung lässt sich andererseits zeigen, dass die Funktion ausreicht, um die Fibonacci-Zahlen (ihre Koeffizienten) eindeutig zu charakterisieren. Da es sich aber um eine schlichte rationale Funktion handelt, lässt sich dadurch die für jede Fibonaccizahl gültige exakte Formel

mit dem goldenen Schnitt herleiten, wenn und gesetzt wird. Die exakte Formel vermag eine Fibonacci-Zahl zu berechnen, ohne die vorherigen zu kennen. Der Schluss wird über einen sog. Koeffizientenvergleich gezogen und nutzt aus, dass das Polynom als Nullstellen und besitzt.[3]

Einordnung der Verallgemeinerung auf den höherdimensionalen Fall[Bearbeiten | Quelltext bearbeiten]

Die Differentialrechnung kann auf den Fall „höherdimensionaler Funktionen“ verallgemeinert werden. Damit ist gemeint, dass sowohl Eingabe- als auch Ausgabewerte der Funktion nicht bloß Teil des eindimensionalen reellen Zahlenstrahls, sondern auch Punkte eines höherdimensionalen Raums sein können. Ein Beispiel ist die Vorschrift

zwischen jeweils zweidimensionalen Räumen. Das Funktionsverständnis als Tabelle bleibt hier identisch, nur dass diese mit „vier Spalten“ „deutlich mehr“ Einträge besitzt. Auch mehrdimensionale Abbildungen können in manchen Fällen an einem Punkt linearisiert werden. Allerdings ist dabei nun angemessen zu beachten, dass es sowohl mehrere Eingabedimensionen als auch mehrere Ausgabedimensionen geben kann: Der korrekte Verallgemeinerungsweg liegt darin, dass die Linearisierung in jeder Komponente der Ausgabe jede Variable auf lineare Weise berücksichtigt. Das zieht für obere Beispielfunktion eine Approximation der Form

nach sich. Diese ahmt dann die gesamte Funktion in der Nähe der Eingabe sehr gut nach. In jeder Komponente wird demnach für jede Variable eine „Steigung“ angegeben – diese wird dann das lokale Verhalten der Komponentenfunktion bei kleiner Änderung in dieser Variablen messen. Die korrekten konstanten Abschnitte berechnen sich exemplarisch durch bzw. . Wie auch im eindimensionalen Fall hängen die Steigungen (hier ) stark von der Wahl des Punktes (hier ) ab, an dem abgeleitet wird. Die Ableitung ist demnach keine Zahl mehr, sondern ein Verband aus insgesamt 4 Zahlen („Steigungen“) – und diese 4 Zahlen sind im Regelfall bei allen Eingaben unterschiedlich. Es wird allgemein für die Ableitung auch

geschrieben, womit alle „Steigungen“ in einer sog. Matrix versammelt sind, obgleich die Schreibweise in diesem Falle unüblich ist.

Beispiel: Wird oben gesetzt, so kann man zeigen, dass folgende lineare Approximation bei sehr kleinen Änderungen von und sehr gut ist:

Zum Beispiel gilt

und

Hat man im ganz allgemeinen Fall Variablen und Ausgabekomponenten, so gibt es kombinatorisch gesehen insgesamt „Steigungen“. Im klassischen Fall gibt es wegen eine Steigung und im oberen Beispiel sind es „Steigungen“.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Gottfried Wilhelm Leibniz
Isaac Newton

Die Aufgabenstellung der Differentialrechnung bildete sich als Tangentenproblem ab dem 17. Jahrhundert heraus.[4] Ein naheliegender Lösungsansatz bestand darin, die Tangente an eine Kurve durch ihre Sekante über einem endlichen (endlich heißt hier: größer als null), aber beliebig kleinen Intervall zu approximieren. Dabei war die technische Schwierigkeit zu überwinden, mit einer solchen infinitesimal kleinen Intervallbreite zu rechnen. Die ersten Anfänge der Differentialrechnung gehen auf Pierre de Fermat zurück. Er entwickelte um 1628 eine Methode, Extremstellen algebraischer Terme zu bestimmen und Tangenten an Kegelschnitte und andere Kurven zu berechnen. Seine „Methode“ war rein algebraisch. Fermat betrachtete keine Grenzübergänge und schon gar keine Ableitungen. Gleichwohl lässt sich seine „Methode“ mit modernen Mitteln der Analysis interpretieren und rechtfertigen, und sie hat Mathematiker wie Newton und Leibniz nachweislich inspiriert. Einige Jahre später wählte René Descartes einen anderen algebraischen Zugang, indem er an eine Kurve einen Kreis anlegte. Dieser schneidet die Kurve in zwei nahe beieinanderliegenden Punkten; es sei denn, er berührt die Kurve. Dieser Ansatz ermöglichte es ihm, für spezielle Kurven die Steigung der Tangente zu bestimmen.[5]

Ende des 17. Jahrhunderts gelang es Isaac Newton und Gottfried Wilhelm Leibniz mit unterschiedlichen Ansätzen unabhängig voneinander, widerspruchsfrei funktionierende Kalküle zu entwickeln. Während Newton das Problem physikalisch über das Momentangeschwindigkeitsproblem anging,[6] löste es Leibniz geometrisch über das Tangentenproblem. Ihre Arbeiten erlaubten das Abstrahieren von rein geometrischer Vorstellung und werden deshalb als Beginn der Analysis betrachtet. Bekannt wurden sie vor allem durch das Buch Analyse des Infiniment Petits pour l’Intelligence des Lignes Courbes[7] des Adligen Guillaume François Antoine, Marquis de L’Hospital, der bei Johann I Bernoulli Privatunterricht nahm und dessen Forschung zur Analysis so publizierte. Darin heißt es:

„Die Reichweite dieses Kalküls ist unermesslich: Er lässt sich sowohl auf mechanische als auch geometrische Kurven anwenden; Wurzelzeichen bereiten ihm keine Schwierigkeiten und sind oftmals sogar angenehm im Umgang; er lässt sich auf so viele Variablen erweitern, wie man sich nur wünschen kann; der Vergleich unendlich kleiner Größen aller Art gelingt mühelos. Und er erlaubt eine unendliche Zahl an überraschenden Entdeckungen über gekrümmte wie geradlinige Tangenten, Fragen De maximis & minimis, Wendepunkte und Spitzen von Kurven, Evoluten, Spiegelungs- und Brechungskaustiken, &c. wie wir in diesem Buch sehen werden.“[8]

Die heute bekannten Ableitungsregeln basieren vor allem auf den Werken von Leonhard Euler, der den Funktionsbegriff prägte.

Newton und Leibniz arbeiteten mit beliebig kleinen positiven Zahlen.[9] Dies wurde bereits von Zeitgenossen als unlogisch kritisiert, beispielsweise von George Berkeley in der polemischen Schrift The analyst; or, a discourse addressed to an infidel mathematician.[10] Erst in den 1960ern konnte Abraham Robinson diese Verwendung infinitesimaler Größen mit der Entwicklung der Nichtstandardanalysis auf ein mathematisch-axiomatisch sicheres Fundament stellen. Trotz der herrschenden Unsicherheit wurde die Differentialrechnung aber konsequent weiterentwickelt, in erster Linie wegen ihrer zahlreichen Anwendungen in der Physik und in anderen Gebieten der Mathematik. Symptomatisch für die damalige Zeit war das von der Preußischen Akademie der Wissenschaften 1784 veröffentlichte Preisausschreiben:

„… Die höhere Geometrie benutzt häufig unendlich große und unendlich kleine Größen; jedoch haben die alten Gelehrten das Unendliche sorgfältig vermieden, und einige berühmte Analysten unserer Zeit bekennen, dass die Wörter unendliche Größe widerspruchsvoll sind. Die Akademie verlangt also, dass man erkläre, wie aus einer widersprechenden Annahme so viele richtige Sätze entstanden sind, und dass man einen sicheren und klaren Grundbegriff angebe, welcher das Unendliche ersetzen dürfte, ohne die Rechnung zu schwierig oder zu lang zu machen …“[11]

Erst zum Anfang des 19. Jahrhunderts gelang es Augustin-Louis Cauchy, der Differentialrechnung die heute übliche logische Strenge zu geben, indem er von den infinitesimalen Größen abging und die Ableitung als Grenzwert von Sekantensteigungen (Differenzenquotienten) definierte.[12] Die heute benutzte Definition des Grenzwerts wurde schließlich von Karl Weierstraß im Jahr 1861 formuliert.[13]

Definition[Bearbeiten | Quelltext bearbeiten]

Vorbemerkungen[Bearbeiten | Quelltext bearbeiten]

Ausgangspunkt für die Definition der Ableitung ist die Näherung der Tangentensteigung durch eine Sekantensteigung (manchmal auch Sehnensteigung genannt). Gesucht sei die Steigung einer Funktion in einem Punkt . Man berechnet zunächst die Steigung der Sekante an über einem endlichen Intervall der Länge :

Sekantensteigung = .

Die Sekantensteigung ist also der Quotient zweier Differenzen; sie wird deshalb auch Differenzenquotient genannt. Mit der Kurznotation für kann man die Sekantensteigung abgekürzt als schreiben. Der Ausdruck verdeutlicht also die beliebig klein werdende Differenz zwischen der Stelle, an der abgeleitet werden soll, und einem benachbarten Punkt. In der Literatur wird jedoch in vielen Fällen aus Gründen der Einfachheit das Symbol statt verwendet.

Differentialquotient einer Funktion

Um eine Tangentensteigung zu berechnen, muss man die beiden Punkte, durch die die Sekante gezogen wird, immer weiter aneinander rücken. Dabei gehen sowohl als auch gegen Null. Der Quotient bleibt aber in vielen Fällen endlich. Auf diesem Grenzübergang beruht die folgende Definition:

Differenzierbarkeit[Bearbeiten | Quelltext bearbeiten]

Definition der Ableitung über die h-Methode: Zu den jeweiligen h-Werten sind die dazugehörigen Sekanten eingezeichnet. Für geht die Sekante in die Tangente und somit die Sekantensteigung (Differenzenquotient) in die Tangentensteigung (Ableitung) über.
Die Sekantensteigungen gehen für in die Steigung der Tangente (und damit in die Ableitung) an der Stelle über. Es gilt .

Eine Funktion , die ein offenes Intervall in die reellen Zahlen abbildet, heißt differenzierbar an der Stelle , falls der Grenzwert

  (mit )

existiert. Dieser Grenzwert heißt Differentialquotient oder Ableitung von nach an der Stelle und wird als

  oder      oder      oder   

notiert.[14][15] Gesprochen werden diese Notationen als „f Strich von x null“, „d f von x nach d x an der Stelle x gleich x null“, „d f nach d x von x null“ respektive „d nach d x von f von x null“. Im später folgenden Abschnitt Notationen werden noch weitere Varianten angeführt, um die Ableitung einer Funktion zu notieren.

Im Laufe der Zeit wurde folgende gleichwertige Definition gefunden, die sich im allgemeineren Kontext komplexer oder mehrdimensionaler Funktionen als leistungsfähiger erwiesen hat: Eine Funktion heißt an einer Stelle differenzierbar, falls eine Konstante existiert, sodass

Der Zuwachs der Funktion , wenn man sich von nur wenig entfernt, etwa um den Wert , lässt sich also durch sehr gut approximieren. Man nennt deshalb die lineare Funktion , für die also für alle gilt, auch die Linearisierung von an der Stelle .[16]

Eine weitere Definition ist: Es gibt eine an der Stelle stetige Funktion mit und eine Konstante , sodass für alle gilt

.

Die Bedingungen und dass an der Stelle stetig ist, bedeuten gerade, dass das „Restglied“ für gegen gegen konvergiert.[16]

In beiden Fällen ist die Konstante eindeutig bestimmt und es gilt . Der Vorteil dieser Formulierung ist, dass Beweise einfacher zu führen sind, da kein Quotient betrachtet werden muss. Diese Darstellung der besten linearen Approximation wurde schon von Karl Weierstraß, Henri Cartan und Jean Dieudonné konsequent angewandt.

Bezeichnet man eine Funktion als differenzierbar, ohne sich auf eine bestimmte Stelle zu beziehen, dann bedeutet dies die Differenzierbarkeit an jeder Stelle des Definitionsbereiches, also die Existenz einer eindeutigen Tangente für jeden Punkt des Graphen.

Jede differenzierbare Funktion ist stetig, die Umkehrung gilt jedoch nicht.[16] Noch Anfang des 19. Jahrhunderts war man überzeugt, dass eine stetige Funktion höchstens an wenigen Stellen nicht differenzierbar sein könne (wie die Betragsfunktion). Bernard Bolzano konstruierte dann als erster Mathematiker tatsächlich eine Funktion, die überall stetig, aber nirgends differenzierbar ist, was in der Fachwelt allerdings nicht bekannt wurde; Karl Weierstraß fand dann in den 1860er Jahren ebenfalls eine derartige Funktion (siehe Weierstraß-Funktion), was diesmal unter Mathematikern Wellen schlug. Ein bekanntes mehrdimensionales Beispiel für eine stetige, nicht differenzierbare Funktion ist die von Helge von Koch 1904 vorgestellte Koch-Kurve.[17]

Ableitungsfunktion[Bearbeiten | Quelltext bearbeiten]

Die Ableitung an verschiedenen Stellen einer differenzierbaren Funktion

Die Ableitung der Funktion an der Stelle , bezeichnet mit , beschreibt lokal das Verhalten der Funktion in der Umgebung der betrachteten Stelle . In einigen Fällen ist es möglich, an jedem Punkt des Funktionsgraphen eine Linearisierung vorzunehmen. Dies erlaubt die Definition einer Ableitungsfunktion (oder kurz Ableitung) , die jedem Element des Definitionsbereichs der Ursprungsfunktion die Steigung der dortigen Linearisierung zuordnet. Man sagt in diesem Falle, „ ist in differenzierbar“.[18]

Beispielsweise hat die Quadratfunktion mit an einer beliebigen Stelle die Ableitung die Quadratfunktion ist also auf der Menge der reellen Zahlen differenzierbar. Die zugehörige Ableitungsfunktion ist gegeben durch mit .

Die Ableitungsfunktion ist im Normalfall eine andere Funktion als die ursprünglich betrachtete. Einzige Ausnahme sind die Vielfachen der natürlichen Exponentialfunktion mit beliebigem – unter denen, wie die Wahl zeigt, auch alle Funktionen mit beliebigem enthalten sind (deren Graph aus dem der Exponentialfunktion durch „seitliche“ Verschiebung um entsteht und zu diesem daher kongruent ist).

Ist die Ableitung stetig, dann heißt stetig differenzierbar. In Anlehnung an die Bezeichnung für die Gesamtheit (den Raum) der stetigen Funktionen mit Definitionsmenge wird der Raum der auf stetig differenzierbaren Funktionen mit abgekürzt.[19]

Notationen[Bearbeiten | Quelltext bearbeiten]

Geschichtlich bedingt gibt es unterschiedliche Notationen, um die Ableitung einer Funktion darzustellen.

Lagrange-Notation[Bearbeiten | Quelltext bearbeiten]

In diesem Artikel wurde bisher hauptsächlich die Notation für die Ableitung von verwendet. Diese Notation geht auf den Mathematiker Joseph-Louis Lagrange zurück, der sie 1797 einführte.[20] Bei dieser Notation wird die zweite Ableitung von mit und die -te Ableitung mittels bezeichnet.

Newton-Notation[Bearbeiten | Quelltext bearbeiten]

Isaac Newton – neben Leibniz der Begründer der Differentialrechnung – notierte die erste Ableitung von mit , entsprechend notierte er die zweite Ableitung durch .[21] Heutzutage wird diese Schreibweise hauptsächlich in der Physik, insbesondere in der Mechanik, für die Ableitung nach der Zeit verwendet.

Leibniz-Notation[Bearbeiten | Quelltext bearbeiten]

Gottfried Wilhelm Leibniz führte für die erste Ableitung von (nach der Variablen ) die Notation ein.[22] Gelesen wird dieser Ausdruck als „d f von x nach d x“. Für die zweite Ableitung notierte Leibniz und die -te Ableitung wird mittels bezeichnet.[23] Bei der Schreibweise von Leibniz handelt es sich nicht um einen Bruch. Die Symbole und werden „Differentiale“ genannt, haben aber in der modernen Differentialrechnung (abgesehen von der Theorie der Differentialformen) lediglich eine symbolische Bedeutung und sind nur in dieser Schreibweise als formaler Differentialquotient erlaubt. In manchen Anwendungen (Kettenregel, Integration mancher Differentialgleichungen, Integration durch Substitution) rechnet man mit ihnen aber fast so, als seien sie gewöhnliche Terme.

Euler-Notation[Bearbeiten | Quelltext bearbeiten]

Die Notation oder für die erste Ableitung von geht auf Leonhard Euler zurück. In dieser Notation wird die zweite Ableitung als oder und die -te Ableitung als oder geschrieben.

Ableitungsberechnung[Bearbeiten | Quelltext bearbeiten]

Das Berechnen der Ableitung einer Funktion wird Differentiation oder Differenziation genannt; sprich, man differenziert diese Funktion.

Um die Ableitung elementarer Funktionen (z. B. , , …) zu berechnen, hält man sich eng an die oben angegebene Definition, berechnet explizit einen Differenzenquotienten und lässt dann gegen Null gehen. Dieses Verfahren ist jedoch meistens umständlich. Bei der Lehre der Differentialrechnung wird diese Art der Rechnung daher nur wenige Male vollzogen. Später greift man auf bereits bekannte Ableitungsfunktionen zurück oder schlägt Ableitungen nicht ganz so geläufiger Funktionen in einem Tabellenwerk nach (z. B. im Bronstein-Semendjajew, siehe auch Tabelle von Ableitungs- und Stammfunktionen) und berechnet die Ableitung zusammengesetzter Funktionen mit Hilfe der Ableitungsregeln.

Ableitungen elementarer Funktionen[Bearbeiten | Quelltext bearbeiten]

Für die exakte Berechnung der Ableitungsfunktionen elementarer Funktionen wird der Differenzenquotient gebildet und im Grenzübergang ausgerechnet. Je nach Funktionstyp müssen hierfür unterschiedliche Strategien angewendet werden.

Natürliche Potenzen[Bearbeiten | Quelltext bearbeiten]

Der Fall kann durch Anwendung der ersten binomischen Formel behandelt werden:

Allgemein muss für eine natürliche Zahl mit auf den binomischen Lehrsatz zurückgegriffen werden:

wobei das Polynom in zwei Variablen nur von abhängt. Es folgt:

denn offenbar gilt .[24]

Exponentialfunktion[Bearbeiten | Quelltext bearbeiten]

Graph der Exponentialfunktion (rot) mit der Tangente (der hellblau gestrichelten Linie) durch den Punkt (0,1)

Für jedes erfüllt die zugehörige Exponentialfunktion die Funktionalgleichung

Dies ist darin begründet, dass ein Produkt aus x Faktoren mit y Faktoren a insgesamt aus x+y Faktoren a besteht. Aus dieser Eigenschaft wird schnell ersichtlich, dass ihre Ableitung bis auf einen konstanten Faktor mit der ursprünglichen Funktion übereinstimmen muss. Es gilt nämlich

Es muss demnach nur die Existenz der Ableitung in geklärt werden, was sich durch

erledigt, mit dem natürlichen Logarithmus von . Existiert nun ferner eine Basis mit der Eigenschaft , so gilt sogar für alle , also . Ein solches ist die Eulersche Zahl: Für diese gilt und sie ist durch diese Eigenschaft sogar eindeutig bestimmt. Wegen dieser auszeichnenden Zusatzeigenschaft wird einfach mit abgekürzt und als natürliche Exponentialfunktion bezeichnet.

Logarithmus[Bearbeiten | Quelltext bearbeiten]

Der Logarithmus zur Basis ist Umkehrfunktion zur entsprechenden Exponentialfunktion

Für den Logarithmus zur Basis kann das Gesetz

genutzt werden. Dies entsteht aus der Überlegung: Wenn u Faktoren von a den Wert x und v Faktoren von a den Wert y erzeugen, wenn also gilt, dann erzeugen u+v Faktoren von a den Wert xy.[25] Damit gilt für :

Dabei wurde neben benutzt, dass mit auch gegen 0 strebt. Der natürliche Logarithmus, außerhalb der Schulmathematik – vor allem in der Zahlentheorie – oft nur , sonst manchmal auch geschrieben, erfüllt .[26] Daraus ergibt sich das Gesetz:

Er ist die Umkehrfunktion der natürlichen Exponentialfunktion, und sein Graph entsteht durch Spiegelung des Graphen der Funktion an der Winkelhalbierenden . Aus folgt geometrisch .

Sinus und Kosinus[Bearbeiten | Quelltext bearbeiten]

Benötigt für die Ableitungsgesetze hinter Sinus und Kosinus werden die Additionstheoreme

und die Relationen

Diese können sämtlich elementar-geometrisch anhand der Definitionen von Sinus und Kosinus bewiesen werden.[27] Damit ergibt sich:

Ähnlich folgert man [28]

Ableitungsregeln[Bearbeiten | Quelltext bearbeiten]

Ableitungen zusammengesetzter Funktionen, z. B. oder , führt man mit Hilfe von Ableitungsregeln auf die Differentiation elementarer Funktionen zurück (siehe auch: Tabelle von Ableitungs- und Stammfunktionen).

Mit den folgenden Regeln kann man die Ableitung zusammengesetzter Funktionen auf Ableitungen einfacherer Funktionen zurückführen. Seien , und (im Definitionsbereich) differenzierbare, reelle Funktionen, und reelle Zahlen, dann gilt:

Konstante Funktion
Faktorregel
Summenregel
Produktregel
Quotientenregel
Reziprokenregel
Potenzregel
Kettenregel
Umkehrregel

Ist eine an der Stelle differenzierbare, bijektive Funktion mit , und ihre Umkehrfunktion bei differenzierbar, dann gilt:

Spiegelt man einen Punkt des Graphen von an der 1. Winkelhalbierenden und erhält damit auf , so ist die Steigung von in der Kehrwert der Steigung von in

Logarithmische Ableitung

Aus der Kettenregel folgt für die Ableitung des natürlichen Logarithmus einer Funktion :

Ein Bruch der Form wird logarithmische Ableitung genannt.

Ableitung von Potenz- und Exponentialfunktionen

Um abzuleiten, erinnert man sich, dass Potenzen mit reellen Exponenten auf dem Umweg über die Exponentialfunktion definiert sind: . Anwendung der Kettenregel und – für die innere Ableitung – der Produktregel ergibt

.

Weitere elementare Funktionen[Bearbeiten | Quelltext bearbeiten]

Hat man die Regeln des Rechenkalküls zur Hand, so können zu vielen weiteren elementaren Funktionen Ableitungsfunktionen bestimmt werden. Dies betrifft besonders wichtige Verkettungen als auch Umkehrfunktionen zu bedeutenden elementaren Funktionen.

Allgemeine Potenzen[Bearbeiten | Quelltext bearbeiten]

Für jeden Wert besitzt die Funktion mit die Ableitung . Dies lässt sich unter Anwendung der Kettenregel zeigen.[29] Nutzt man die Schreibweise , so ergibt sich

Insbesondere ergeben sich daraus Ableitungsgesetze für allgemeine Wurzelfunktionen: Für jede natürliche Zahl ist , und somit folgt

Der Fall betrifft die Quadratwurzel:

Tangens und Kotangens[Bearbeiten | Quelltext bearbeiten]

Mit Hilfe der Quotientenregel können über die Ableitungsregeln für Sinus und Kosinus auch Ableitungen von Tangens und Kotangens bestimmt werden. Es gilt

Dabei wurde der Satz des Pythagoras verwendet. Ganz ähnlich zeigt man .[30]

Arkussinus und Arkuskosinus[Bearbeiten | Quelltext bearbeiten]

Arkussinus und Arkuskosinus definieren Umkehrfunktionen von Sinus und Kosinus. Im Innern ihres Definitionsbereichs können die Ableitungen mittels der Umkehrregel berechnet werden. Setzt man etwa , so folgt dort

Es ist zu beachten, dass der Hauptzweig des Arkussinus betrachtet wurde und die Ableitung an den Randstellen nicht existiert. Für den Arkuskosinus ergibt sich mit analog

im offenen Intervall .[31]

Arkustangens und Arkuskotangens[Bearbeiten | Quelltext bearbeiten]

Arkustangens und Arkuskotangens definieren Umkehrfunktionen von Tangens und Kotangens. In ihrem Definitionsbereich können die Ableitungen mittels der Umkehrregel berechnet werden. Setzt man etwa , so folgt

Für den Arkuskotangens ergibt sich mit analog

Beide Ableitungsfunktionen sind, wie Arkustangens und Arkuskotangens selbst, überall in den reellen Zahlen definiert.[32]

Geometrische Veranschaulichung der Ableitung normierter Potenzfunktionen[Bearbeiten | Quelltext bearbeiten]

Stellt man die normierten Potenzfunktionen ersten, zweiten und dritten Grades geometrisch dar, lassen sich deren Ableitungsfunktionen durch Grenzwertbildung veranschaulichen.

Eine Änderung der Basislänge um bewirkt eine Änderung der Potenz und führt für hinreichend kleines im Fall

Geometrische Veranschaulichung der Ableitung der Polynome und (grau). Eine Änderung des Arguments führt zu einer entsprechenden Strecken-, Flächen- oder Volumenänderung (rot). Für eine hinreichend kleine Änderung ergeben sich entsprechend Änderungen um , und .
  • einer Strecke () zu einer Längenänderung um eine Länge , also um .
  • eines Quadrats () zu einer Flächenänderung um zwei Flächen , also um .
  • eines Würfels () zu einer Volumenänderung um drei Volumina , also um .

In jedem dieser drei Fälle ergibt eine Division der Änderung durch die jeweilige Ableitung.

Formeller behandelt, können anhand der geometrischen Überlegungen die Grenzwerte wie folgt ermittelt werden:

Linke Spalte :

Verschiebung um verursacht Längenänderung (Zeile 2):

Für (Zeile 3):

Grenzwert (Zeile 4):

:

Mittlere Spalte

Verschiebung um verursacht Flächenänderung: (Zeile 2):

Für (Zeile 3):

Somit ist der Grenzwert (Zeile 4):

Rechte Spalte :

Verschiebung um verursacht Volumenänderung (Zeile 2):

Für (Zeile 3):

Somit ist der Grenzwert (Zeile 4):

Höhere Ableitungen[Bearbeiten | Quelltext bearbeiten]

Ist die Ableitung einer Funktion wiederum differenzierbar, so lässt sich die zweite Ableitung von als Ableitung der ersten definieren. Auf dieselbe Weise können dann auch dritte, vierte etc. Ableitungen definiert werden. Eine Funktion kann dementsprechend einmal differenzierbar, zweimal differenzierbar etc. sein.

Ist die erste Ableitung nach der Zeit eine Geschwindigkeit, so kann die zweite Ableitung als Beschleunigung und die dritte Ableitung als Ruck interpretiert werden.

Wenn Politiker sich über den „Rückgang des Anstiegs der Arbeitslosenzahl“ äußern, dann sprechen sie von der zweiten Ableitung (Änderung des Anstiegs), um die Aussage der ersten Ableitung (Anstieg der Arbeitslosenzahl) zu relativieren.

Höhere Ableitungen können auf verschiedene Weisen geschrieben werden:

oder im physikalischen Fall (bei einer Ableitung nach der Zeit)

Für die formale Bezeichnung beliebiger Ableitungen legt man außerdem und fest.

Höhere Differentialoperatoren[Bearbeiten | Quelltext bearbeiten]

Ist eine natürliche Zahl und offen, so wird der Raum der in -mal stetig differenzierbaren Funktionen mit bezeichnet. Der Differentialoperator induziert damit eine Kette von linearen Abbildungen

und damit allgemein für :

Dabei bezeichnet den Raum der in stetigen Funktionen. Exemplarisch: Wird ein durch Anwenden von einmal abgeleitet, kann das Ergebnis im Allgemeinen nur noch -mal abgeleitet werden usw. Jeder Raum ist eine -Algebra, da nach der Summen- bzw. der Produktregel Summen und auch Produkte von -mal stetig differenzierbaren Funktionen wieder -mal stetig differenzierbar sind. Es gilt zudem die aufsteigende Kette von echten Inklusionen

denn offenbar ist jede mindestens -mal stetig differenzierbare Funktion auch -mal stetig differenzierbar usw., jedoch zeigen die Funktionen

exemplarisch Beispiele für Funktionen aus , wenn – was ohne Beschränkung der Allgemeinheit möglich ist – angenommen wird.[33]

Höhere Ableitungsregeln[Bearbeiten | Quelltext bearbeiten]

Leibnizsche Regel

Die Ableitung -ter Ordnung für ein Produkt aus zwei -mal differenzierbaren Funktionen und ergibt sich aus

.

Die hier auftretenden Ausdrücke der Form sind Binomialkoeffizienten. Die Formel ist eine Verallgemeinerung der Produktregel.

Formel von Faà di Bruno

Diese Formel ermöglicht die geschlossene Darstellung der -ten Ableitung der Komposition zweier -mal differenzierbarer Funktionen. Sie verallgemeinert die Kettenregel auf höhere Ableitungen.

Taylorformeln mit Restglied[Bearbeiten | Quelltext bearbeiten]

Ist eine in einem Intervall -mal stetig differenzierbare Funktion, dann gilt für alle und aus die sogenannte Taylorformel:

mit dem -ten Taylorpolynom an der Entwicklungsstelle

und dem -ten Restglied

mit einem .[34] Eine beliebig oft differenzierbare Funktion wird glatte Funktion genannt. Da sie alle Ableitungen besitzt, kann die oben angegebene Taylorformel zur Taylorreihe von mit Entwicklungspunkt erweitert werden:

Es ist jedoch nicht jede glatte Funktion durch ihre Taylorreihe darstellbar, siehe unten.

Glatte Funktionen[Bearbeiten | Quelltext bearbeiten]

Funktionen, die an jeder Stelle ihres Definitionsbereichs beliebig oft differenzierbar sind, bezeichnet man auch als glatte Funktionen. Die Menge aller in einer offenen Menge glatten Funktionen wird meist mit bezeichnet. Sie trägt die Struktur einer -Algebra (skalare Vielfache, Summen und Produkte glatter Funktionen sind wieder glatt) und ist gegeben durch

wobei alle in -mal stetig differenzierbaren Funktionen bezeichnet.[19] Häufig findet man in mathematischen Betrachtungen den Begriff hinreichend glatt. Damit ist gemeint, dass die Funktion mindestens so oft differenzierbar ist, wie es nötig ist, um den aktuellen Gedankengang durchzuführen.

Analytische Funktionen[Bearbeiten | Quelltext bearbeiten]

Der obere Begriff der Glattheit kann weiter verschärft werden. Eine Funktion heißt reell analytisch, wenn sie sich in jedem Punkt lokal in eine Taylorreihe entwickeln lässt, also

für alle und alle hinreichend kleinen Werte von . Analytische Funktionen haben starke Eigenschaften und finden besondere Aufmerksamkeit in der komplexen Analysis. Dort werden dementsprechend keine reell, sondern komplex analytischen Funktionen studiert. Ihre Menge wird meist mit bezeichnet und es gilt . Insbesondere ist jede analytische Funktion glatt, aber nicht umgekehrt. Die Existenz aller Ableitungen ist also nicht hinreichend dafür, dass die Taylorreihe die Funktion darstellt, wie das folgende Gegenbeispiel

einer nicht analytischen glatten Funktion zeigt.[35] Alle reellen Ableitungen dieser Funktion verschwinden in 0, aber es handelt sich nicht um die Nullfunktion. Daher wird sie an der Stelle 0 nicht durch ihre Taylorreihe dargestellt.

Anwendungen[Bearbeiten | Quelltext bearbeiten]

Kurvendiskussion

Eine der wichtigsten Anwendungen der Differentialrechnung ist die Bestimmung von Extremwerten, meist zur Optimierung von Prozessen. Diese befinden sich unter anderem bei monotonen Funktionen am Rand des Definitionsbereichs, im Allgemeinen jedoch an den Stellen, wo die Ableitung Null ist. Eine Funktion kann einen Maximal- oder Minimalwert haben, ohne dass die Ableitung an dieser Stelle existiert, im Folgenden werden jedoch nur zumindest lokal differenzierbare Funktionen betrachtet. Als Beispiel nehmen wir die Polynomfunktion mit dem Funktionsterm

Die Abbildung zeigt den Verlauf der Graphen von , und .

Horizontale Tangenten[Bearbeiten | Quelltext bearbeiten]

Besitzt eine Funktion mit an einer Stelle ihren größten Wert, gilt also für alle dieses Intervalls , und ist an der Stelle differenzierbar, so kann die Ableitung dort nur gleich Null sein: . Eine entsprechende Aussage gilt, falls in den kleinsten Wert annimmt.

Geometrische Deutung dieses Satzes von Fermat ist, dass der Graph der Funktion in lokalen Extrempunkten eine parallel zur -Achse verlaufende Tangente, auch waagerechte Tangente genannt, besitzt.

Es ist somit für differenzierbare Funktionen eine notwendige Bedingung für das Vorliegen einer Extremstelle, dass die Ableitung an der betreffenden Stelle den Wert 0 annimmt:

Umgekehrt kann aber daraus, dass die Ableitung an einer Stelle den Wert Null hat, noch nicht auf eine Extremstelle geschlossen werden, es könnte auch beispielsweise ein Sattelpunkt vorliegen. Eine Liste verschiedener hinreichender Kriterien, deren Erfüllung sicher auf eine Extremstelle schließen lässt, findet sich im Artikel Extremwert. Diese Kriterien benutzen meist die zweite oder noch höhere Ableitungen.

Bedingung im Beispiel[Bearbeiten | Quelltext bearbeiten]

Im Beispiel ist

Daraus folgt, dass genau für und gilt. Die Funktionswerte an diesen Stellen sind und , d. h., die Kurve hat in den Punkten und waagerechte Tangenten, und nur in diesen.

Da die Folge

abwechselnd aus kleinen und großen Werten besteht, muss in diesem Bereich ein Hoch- und ein Tiefpunkt liegen. Nach dem Satz von Fermat hat die Kurve in diesen Punkten eine waagerechte Tangente, es kommen also nur die oben ermittelten Punkte in Frage: Also ist ein Hochpunkt und ein Tiefpunkt.

Kurvendiskussion[Bearbeiten | Quelltext bearbeiten]

Mit Hilfe der Ableitungen lassen sich noch weitere Eigenschaften der Funktion analysieren, wie die Existenz von Wende- und Sattelpunkten, die Konvexität oder die oben schon angesprochene Monotonie. Die Durchführung dieser Untersuchungen ist Gegenstand der Kurvendiskussion.

Termumformungen[Bearbeiten | Quelltext bearbeiten]

Neben der Bestimmung der Steigung von Funktionen ist die Differentialrechnung durch ihren Kalkül ein wesentliches Hilfsmittel bei der Termumformung. Hierbei löst man sich von jeglichem Zusammenhang mit der ursprünglichen Bedeutung der Ableitung als Anstieg. Hat man zwei Terme als gleich erkannt, lassen sich durch Differentiation daraus weitere (gesuchte) Identitäten gewinnen. Ein Beispiel mag dies verdeutlichen:

Aus der bekannten Partialsumme

der geometrischen Reihe soll die Summe

berechnet werden. Dies gelingt durch Differentiation mit Hilfe der Quotientenregel:

Alternativ ergibt sich die Identität auch durch Ausmultiplizieren und anschließendes dreifaches Teleskopieren, was aber nicht so einfach zu durchschauen ist.

Zentrale Aussagen der Differentialrechnung einer Variablen[Bearbeiten | Quelltext bearbeiten]

Fundamentalsatz der Analysis[Bearbeiten | Quelltext bearbeiten]

Die wesentliche Leistung Leibniz’ war die Erkenntnis, dass Integration und Differentiation zusammenhängen. Diese formulierte er im Hauptsatz der Differential- und Integralrechnung, auch Fundamentalsatz der Analysis genannt, der besagt:

Ist ein Intervall, eine stetige Funktion und eine beliebige Zahl aus , so ist die Funktion

stetig differenzierbar, und ihre Ableitung ist gleich .

Hiermit ist also eine Anleitung zum Integrieren gegeben: Gesucht ist eine Funktion , deren Ableitung der Integrand ist. Dann gilt:[36]

Mittelwertsatz der Differentialrechnung[Bearbeiten | Quelltext bearbeiten]

Ein weiterer zentraler Satz der Differentialrechnung ist der Mittelwertsatz, der 1821 von Cauchy bewiesen wurde.[37]

Es sei eine Funktion, die auf dem abgeschlossenen Intervall (mit ) definiert und stetig ist. Außerdem sei die Funktion im offenen Intervall differenzierbar. Unter diesen Voraussetzungen gibt es mindestens ein , sodass

gilt – geometrisch-anschaulich: Zwischen zwei Schnittpunkten einer Sekante gibt es auf der Kurve einen Punkt mit zur Sekante paralleler Tangente.[38]

Monotonie und Differenzierbarkeit[Bearbeiten | Quelltext bearbeiten]

Ist und eine differenzierbare Funktion mit für alle , so gelten folgende Aussagen:[39]

  • Die Funktion ist strikt monoton.
  • Es ist mit irgendwelchen .
  • Die Umkehrfunktion existiert, ist differenzierbar und erfüllt .

Daraus lässt sich herleiten, dass eine stetig differenzierbare Funktion , deren Ableitung nirgends verschwindet, bereits einen Diffeomorphismus zwischen den Intervallen und definiert. In mehreren Variablen ist die analoge Aussage falsch. So verschwindet die Ableitung der komplexen Exponentialfunktion , nämlich sie selbst, in keinem Punkt, aber es handelt sich um keine (global) injektive Abbildung . Man beachte, dass diese als höherdimensionale reelle Funktion aufgefasst werden kann, da ein zweidimensionaler -Vektorraum ist.

Die Regel von de L’Hospital[Bearbeiten | Quelltext bearbeiten]

Als eine Anwendung des Mittelwertsatzes lässt sich eine Beziehung herleiten, die es in manchen Fällen erlaubt, unbestimmte Terme der Gestalt oder zu berechnen.[40]

Seien differenzierbar und habe keine Nullstelle. Ferner gelte entweder

oder

.

Dann gilt

falls der letzte Grenzwert in existiert.

Differentialrechnung bei Funktionenfolgen und Integralen[Bearbeiten | Quelltext bearbeiten]

In vielen analytischen Anwendungen hat man es nicht mit einer Funktion , sondern mit einer Folge zu tun. Dabei muss geklärt werden, inwieweit sich der Ableitungsoperator mit Prozessen wie Grenzwerten, Summen oder Integralen verträgt.

Grenzfunktionen[Bearbeiten | Quelltext bearbeiten]

Bei einer konvergenten, differenzierbaren Funktionenfolge ist es im Allgemeinen nicht möglich, Rückschlüsse auf den Grenzwert der Folge zu ziehen, selbst dann nicht, wenn gleichmäßig konvergiert. Die analoge Aussage in der Integralrechnung ist hingegen richtig: Bei gleichmäßiger Konvergenz können Limes und Integral vertauscht werden, zumindest dann, wenn die Grenzfunktion „gutartig“ ist.

Aus dieser Tatsache kann zumindest Folgendes geschlossen werden: Sei eine Folge stetig differenzierbarer Funktionen, sodass die Folge der Ableitungen gleichmäßig gegen eine Funktion konvergiert. Es gelte außerdem, dass die Folge für mindestens einen Punkt konvergiert. Dann konvergiert bereits gleichmäßig gegen eine differenzierbare Funktion und es gilt .[41]

Vertauschen mit unendlichen Reihen[Bearbeiten | Quelltext bearbeiten]

Sei eine Folge stetig differenzierbarer Funktionen, sodass die Reihe konvergiert, wobei die Supremumsnorm bezeichnet. Konvergiert außerdem die Reihe für ein , dann konvergiert die Folge gleichmäßig gegen eine differenzierbare Funktion, und es gilt[42]

Vertauschen mit Integration[Bearbeiten | Quelltext bearbeiten]

Es sei eine stetige Funktion, sodass die partielle Ableitung

existiert und stetig ist. Dann ist auch

differenzierbar, und es gilt

Diese Regel wird auch als Leibnizsche Regel bezeichnet.[43]

Differentialrechnung über den komplexen Zahlen[Bearbeiten | Quelltext bearbeiten]

Bisher wurde nur von reellen Funktionen gesprochen. Alle behandelten Regeln lassen sich jedoch auf Funktionen mit komplexen Eingaben und Werten übertragen. Dies hat den Hintergrund, dass die komplexen Zahlen genau wie die reellen Zahlen einen Körper bilden, dort also Addition, Multiplikation und Division erklärt ist. Diese zusätzliche Struktur bildet den entscheidenden Unterschied zu einer Herangehensweise mehrdimensionaler reeller Ableitungen, wenn bloß als zweidimensionaler -Vektorraum aufgefasst wird. Ferner lassen sich die euklidischen Abstandsbegriffe der reellen Zahlen (siehe auch Euklidischer Raum) auf natürliche Weise auf komplexe Zahlen übertragen. Dies erlaubt eine analoge Definition und Behandlung der für die Differentialrechnung wichtigen Begriffe wie Folge und Grenzwert.[44]

Ist also offen, eine komplexwertige Funktion, so heißt an der Stelle komplex differenzierbar, wenn der Grenzwert

existiert.[45] Dieser wird mit bezeichnet und (komplexe) Ableitung von an der Stelle genannt. Es ist demnach möglich, den Begriff der Linearisierung ins Komplexe weiterzutragen: Die Ableitung ist die „Steigung“ der linearen Funktion, die bei optimal approximiert. Allerdings ist darauf zu achten, dass der Wert im Grenzwert nicht nur reelle, sondern auch komplexe Zahlen (nahe bei 0) annehmen kann. Dies hat zur Folge, dass der Terminus der komplexen Differenzierbarkeit wesentlich restriktiver ist als jener der reellen Differenzierbarkeit. Während im Reellen nur zwei Richtungen im Differenzenquotienten betrachtet werden mussten, sind es im Komplexen unendlich viele Richtungen, da diese keine Gerade, sondern eine Ebene aufspannen. So ist beispielsweise die Betragsfunktion nirgends komplex differenzierbar. Eine komplexe Funktion ist genau dann komplex differenzierbar in einem Punkt, wenn sie dort die Cauchy-Riemannschen Differentialgleichungen erfüllt.[46]

Trotz (bzw. gerade wegen) des viel einschränkenderen Begriffs der komplexen Differenzierbarkeit übertragen sich alle üblichen Rechenregeln der reellen Differentialrechnung in die komplexe Differentialrechnung. Dazu gehören die Ableitungsregeln, also zum Beispiel Summen-, Produkt- und Kettenregel, wie auch die Umkehrregel für inverse Funktionen. Viele Funktionen, wie Potenzen, die Exponentialfunktion oder der Logarithmus, haben natürliche Fortsetzungen in die komplexen Zahlen und besitzen weiterhin ihre charakteristischen Eigenschaften. Von diesem Gesichtspunkt her ist die komplexe Differentialrechnung mit ihrem reellen Analogon identisch.

Wenn eine Funktion in ganz komplex differenzierbar ist, nennt man sie auch eine „in holomorphe Funktion“.[47] Holomorphe Funktionen haben bedeutende Eigenschaften. So ist zum Beispiel jede holomorphe Funktion bereits (in jedem Punkt) beliebig oft differenzierbar. Die daraus aufkommende Klassifizierungfrage holomorpher Funktionen ist Gegenstand der Funktionentheorie. Es stellt sich heraus, dass im komplex-eindimensionalen Fall der Begriff holomorph genau äquivalent zum Begriff analytisch ist. Demnach ist jede holomorphe Funktion analytisch, und umgekehrt. Ist eine Funktion sogar in ganz holomorph, so nennt man sie ganz. Beispiele für ganze Funktionen sind die Potenzfunktionen mit natürlichen Zahlen sowie , und .

Differentialrechnung mehrdimensionaler Funktionen[Bearbeiten | Quelltext bearbeiten]

Alle vorherigen Ausführungen legten eine Funktion in einer Variablen (also mit einer reellen oder komplexen Zahl als Argument) zugrunde. Funktionen, die Vektoren auf Vektoren oder Vektoren auf Zahlen abbilden, können ebenfalls eine Ableitung haben. Allerdings ist eine Tangente an den Funktionsgraph in diesen Fällen nicht mehr eindeutig bestimmt, da es viele verschiedene Richtungen gibt. Hier ist also eine Erweiterung des bisherigen Ableitungsbegriffs notwendig.

Mehrdimensionale Differenzierbarkeit und die Jacobi-Matrix[Bearbeiten | Quelltext bearbeiten]

Richtungsableitung[Bearbeiten | Quelltext bearbeiten]

Es sei offen, eine Funktion, und ein (Richtungs-)Vektor. Aufgrund der Offenheit von gibt es ein mit für alle , weshalb die Funktion mit wohldefiniert ist. Ist diese Funktion in differenzierbar, so heißt ihre Ableitung Richtungsableitung von an der Stelle in der Richtung und wird meistens mit bezeichnet.[48] Es gilt:

Es besteht ein Zusammenhang zwischen der Richtungsableitung und der Jacobi-Matrix. Ist differenzierbar, dann existiert und es gilt in einer Umgebung von :

wobei die Schreibweise das entsprechende Landau-Symbol bezeichnet.[49]

Es werde als Beispiel eine Funktion betrachtet, also ein Skalarfeld. Diese könnte eine Temperaturfunktion sein: In Abhängigkeit vom Ort wird die Temperatur im Zimmer gemessen, um zu beurteilen, wie effektiv die Heizung ist. Wird das Thermometer in eine bestimmte Raumrichtung bewegt, ist eine Veränderung der Temperatur festzustellen. Dies entspricht genau der entsprechenden Richtungsableitung.

Partielle Ableitungen[Bearbeiten | Quelltext bearbeiten]

Die Richtungsableitungen in spezielle Richtungen , nämlich in die der Koordinatenachsen mit der Länge , nennt man die partiellen Ableitungen.

Insgesamt lassen sich für eine Funktion in Variablen partielle Ableitungen errechnen:[50]

Die einzelnen partiellen Ableitungen einer Funktion lassen sich auch gebündelt als Gradient oder Nablavektor anschreiben:[51]

Meist wird der Gradient als Zeilenvektor (also „liegend“) geschrieben. In manchen Anwendungen, besonders in der Physik, ist jedoch auch die Schreibweise als Spaltenvektor (also „stehend“) üblich. Partielle Ableitungen können wieder differenzierbar sein und ihre partiellen Ableitungen lassen sich dann in der sogenannten Hesse-Matrix anordnen. Analog zum eindimensionalen Fall sind die Kandidaten für lokale Extremstellen die Stellen, an denen alle Ableitungen null sind, wo also der Gradient verschwindet. Ebenfalls analog bestimmt die zweite Ableitung, also die Hesse-Matrix, in gewissen Fällen, welcher Fall vorliegt. Im Gegensatz zum Eindimensionalen ist allerdings die Formenvielfalt größer. Mittels einer Hauptachsentransformation der durch eine mehrdimensionale Taylor-Entwicklung im betrachteten Punkt gegebenen quadratischen Form lassen sich die verschiedenen Fälle klassifizieren.

Totale Differenzierbarkeit[Bearbeiten | Quelltext bearbeiten]

Eine Funktion mit , wobei eine offene Menge ist, heißt in einem Punkt total differenzierbar (oder auch nur differenzierbar, manchmal auch Fréchet-differenzierbar[48]), falls eine lineare Abbildung existiert, sodass

gilt.[52] Für den eindimensionalen Fall stimmt diese Definition mit der oben angegebenen überein. Die lineare Abbildung ist bei Existenz eindeutig bestimmt, ist also insbesondere unabhängig von der Wahl äquivalenter Normen. Die Tangente wird daher durch die lokale Linearisierung der Funktion abstrahiert. Die Matrixdarstellung der ersten Ableitung von nennt man Jacobi-Matrix. Es handelt sich um eine -Matrix. Für erhält man den weiter oben beschriebenen Gradienten.

Zwischen den partiellen Ableitungen und der totalen Ableitung besteht folgender Zusammenhang: Existiert in einem Punkt die totale Ableitung, so existieren dort auch alle partiellen Ableitungen. In diesem Fall stimmen die partiellen Ableitungen mit den Koeffizienten der Jacobi-Matrix überein:

Umgekehrt folgt aus der Existenz der partiellen Ableitungen in einem Punkt nicht zwingend die totale Differenzierbarkeit, ja nicht einmal die Stetigkeit. Sind die partiellen Ableitungen jedoch zusätzlich in einer Umgebung von stetig, dann ist die Funktion in auch total differenzierbar.[53]

Rechenregeln der mehrdimensionalen Differentialrechnung[Bearbeiten | Quelltext bearbeiten]

Kettenregel[Bearbeiten | Quelltext bearbeiten]

Es seien und offen sowie und in bzw. differenzierbar, wobei . Dann ist mit in differenzierbar mit Jacobi-Matrix

Mit anderen Worten, die Jacobi-Matrix der Komposition ist das Produkt der Jacobi-Matrizen von und .[54] Es ist zu beachten, dass die Reihenfolge der Faktoren im Gegensatz zum klassischen eindimensionalen Fall eine Rolle spielt.

Produktregel[Bearbeiten | Quelltext bearbeiten]

Mit Hilfe der Kettenregel kann die Produktregel auf reellwertige Funktionen mit höherdimensionalem Definitionsbereich verallgemeinert werden.[55] Ist offen und sind beide in differenzierbar, so folgt

oder in der Gradientenschreibweise

Funktionenfolgen[Bearbeiten | Quelltext bearbeiten]

Sei offen. Es bezeichne eine Folge stetig differenzierbarer Funktionen , sodass es Funktionen und gibt (dabei ist der Raum der linearen Abbildungen von nach