Farey-Folge

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Eine Farey-Folge (mathematisch unkorrekt auch Farey-Reihe oder einfach Farey-Brüche) ist in der Zahlentheorie eine geordnete Menge der vollständig gekürzten Brüche zwischen 0 und 1, deren jeweiliger Nenner den Index N nicht übersteigt. Benannt sind die Farey-Folgen nach dem britischen Geologen John Farey Sr., der diese Anordnung der Brüche 1816 vorschlug.[1] Tatsächlich hatte aber ein französischer Mathematiker namens Haros einige grundlegende Eigenschaften dieser Folge schon 1802 veröffentlicht, wovon aber erst später Notiz genommen wurde.[2]

Formale Definition[Bearbeiten | Quelltext bearbeiten]

Eine Farey-Folge N-ter Ordnung ist eine geordnete Menge von Brüchen mit , , mit Indexmenge und , so dass

für alle gilt.

Beispiele[Bearbeiten | Quelltext bearbeiten]

.

Die ersten 8 Folgen in einer strukturierten Darstellung:

F1 = {0   ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·    ·   1}
F2 = {0   ·    ·    ·    ·    ·    ·    ·    ·    ·    ·   1/2   ·    ·    ·    ·    ·    ·    ·    ·    ·    ·   1}
F3 = {0   ·    ·    ·    ·    ·    ·   1/3   ·    ·    ·   1/2   ·    ·    ·   2/3   ·    ·    ·    ·    ·    ·   1}
F4 = {0   ·    ·    ·    ·   1/4   ·   1/3   ·    ·    ·   1/2   ·    ·    ·   2/3   ·   3/4   ·    ·    ·    ·   1}
F5 = {0   ·    ·    ·   1/5  1/4   ·   1/3   ·   2/5   ·   1/2   ·   3/5   ·   2/3   ·   3/4  4/5   ·    ·    ·   1}
F6 = {0   ·    ·   1/6  1/5  1/4   ·   1/3   ·   2/5   ·   1/2   ·   3/5   ·   2/3   ·   3/4  4/5  5/6   ·    ·   1}
F7 = {0   ·   1/7  1/6  1/5  1/4  2/7  1/3   ·   2/5  3/7  1/2  4/7  3/5   ·   2/3  5/7  3/4  4/5  5/6  6/7   ·   1}
F8 = {0  1/8  1/7  1/6  1/5  1/4  2/7  1/3  3/8  2/5  3/7  1/2  4/7  3/5  5/8  2/3  5/7  3/4  4/5  5/6  6/7  7/8  1}

Konstruktion[Bearbeiten | Quelltext bearbeiten]

Es gibt wenigstens zwei Wege, eine Farey-Folge zu konstruieren.

Methode 1[Bearbeiten | Quelltext bearbeiten]

Bei der ersten Methode sammelt man zunächst alle notwendigen Brüche und sortiert sie anschließend. Für eine Farey-Folge werden die beiden Brüche und und alle Brüche gebraucht, deren Nenner q zwischen 2 und N liegen und deren Zähler zwischen 1 und N-1 liegen.

Die Brüche für F8 sind und

.

Alle möglichen Brüche werden nun so weit wie möglich gekürzt, der Größe nach aufsteigend sortiert, und doppelte Elemente gestrichen:

Methode 2[Bearbeiten | Quelltext bearbeiten]

Die zweite Methode benutzt eine spezielle Form der Addition von Brüchen. Zur Konstruktion der Folge muss die vorhergehende Farey-Folge bekannt sein. Man ergänzt dabei die vorhergehende Farey-Folge um Brüche, die man aus einer Operation jeweils nebeneinander liegender Brüche gewinnt, die aber folgende Bedingung erfüllen müssen: Die Summe der Nenner der beiden Brüche muss N ergeben. Die Operation sieht wie folgt aus: Wenn die beiden, nebeneinander liegenden Brüche und sind, und die Summe der beiden Nenner b und d = N ist, dann ist der neue Bruch . Für diese Operation hat sich die Bezeichnung Farey-Addition etabliert. Durch die gemachte Einschränkung gilt für jede Farey-Folge, dass sie Teilmenge der Peirce-Zahlen ist.

Wird angenommen, ist eine rekursive Konstruktion möglich.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Berechnet werden soll . wird als bekannt vorausgesetzt, oder selbst erst noch erstellt werden. Mit nebeneinander liegenden Brüchen, deren Nennersumme gleich 7 ist, werden durch Addition von Zähler und Nenner die neuen Elemente gebildet:

Die neuen Elemente sind:

Richtig einsortiert ergibt sich nun

.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die Mächtigkeit einer Farey-Folge zum Index N ist gleich der Mächtigkeit der Vorgängerfolge zum Index N-1 addiert mit dem Wert der Eulerschen φ-Funktion für N:

.

Bei zwei aufeinander folgenden Brüchen und einer Farey-Folge ergeben die Produkte a·d und b·c zwei aufeinander folgende Zahlen. Man kann auch schreiben:

.

Sind umgekehrt und zwei Brüche mit und , so handelt es sich um Nachbarn bis zur Farey-Folge , mit anderen Worten: Jeder dazwischen liegende Bruch hat einen Nenner . In der Tat müssen nämlich die Zähler der positiven Brüche und positive ganze Zahlen sein, also und .

Hieraus folgt

.

Ebenso folgt

.

Beide Ungleichungen werden scharf genau für die Farey-Summe .

Farey-Folgen und Riemannvermutung[Bearbeiten | Quelltext bearbeiten]

Jérôme Franel bewies 1924 (ergänzt durch Edmund Landau), dass die Riemannvermutung zu einer Aussage über Farey-Reihen äquivalent ist.

Seien die Elemente der n-ten Farey-Folge und sei der Abstand zwischen dem k-ten Term der n-ten Fareyfolge und dem k-ten Term der äquidistanten Punktreihe im Einheitsintervall mit derselben Anzahl von Termen wie die n-te Fareyfolge. Franel bewies dann die Äquivalenz der Riemannhypothese zu (verwendet werden die Landau-Symbole):

und Landau bemerkte, dass die Riemannhypothese dann auch zu

äquivalent ist.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. John Farey: On a curious Property of vulgar Fractions. In: The Philosophical Magazine and Journal 47 (1816), S. 385-386, Nr. LXXIX. Vgl. S. A.: On Vulgar Fractions. In: The Philosophical Magazine and Journal 48 (1816), S. 204, Nr. XLIII.
  2. C.[itoy]en [= Bürger] Haros: Tables pour évaluer une fraction ordinaire avec autant de décimales qu'on voudra ; et pour trouver la fraction ordinaire la plus simple, et qui approche sensiblement d'une fraction décimale. In: Journal de l'école polytechnique 4 (1802), Nr. 11, S. 364-368.