Fayalit

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Fayalit
Fayalite crystal group - Ochtendung, Eifel, Germany.jpg
Fayalit-Kristallgruppe aus Ochtendung in der Eifel
Allgemeines und Klassifikation
Chemische Formel Fe22+[SiO4][1]
Mineralklasse
(und ggf. Abteilung)
Silikate und Germanate – Inselsilikate (Nesosilikate)
System-Nr. nach Strunz
und nach Dana
9.AC.05 (8. Auflage: VIII/A.04)
51.03.01.01
Kristallographische Daten
Kristallsystem orthorhombisch
Kristallklasse; Symbol orthorhombisch-dipyramidal; 2/m 2/m 2/m[2]
Raumgruppe Pbnm (Nr. 62, Stellung 3)Vorlage:Raumgruppe/62.3[1]
Gitterparameter a = 4,82 Å; b = 10,48 Å; c = 6,09 Å[1]
Formeleinheiten Z = 4[1]
Physikalische Eigenschaften
Mohshärte 6,5 bis 7[3]
Dichte (g/cm3) gemessen: 4,392; berechnet: [4,40][3]
Spaltbarkeit gut nach {010} nach {100}
Bruch; Tenazität muschelig bis uneben
Farbe grünlichgelb, hellgelb bis bernsteingelb, gelbbraun, rotbraun bis schwarz
Strichfarbe weiß
Transparenz durchsichtig bis undurchsichtig
Glanz Glasglanz, Harzglanz auf Bruchflächen[3]
Kristalloptik
Brechungsindizes nα = 1,731 bis 1,824[4]
nβ = 1,760 bis 1,864[4]
nγ = 1,773 bis 1,875[4]
Doppelbrechung δ = 0,042 bis 0,051[4]
Optischer Charakter zweiachsig negativ
Achsenwinkel 2V = 74° bis 47° (gemessen); 54° bis 66° (berechnet)[4]
Weitere Eigenschaften
Chemisches Verhalten löslich in HCl

Fayalit ist ein eher selten vorkommendes Mineral aus der Mineralklasse der „Silikate und Germanate“ mit der chemischen Zusammensetzung Fe22+[SiO4] und ist damit chemisch gesehen ein Eisensilikat. Er bildet mit Forsterit sowie mit Tephroit eine lückenlose Mischreihe, deren Zwischenglieder als Olivin bezeichnet werden.

Fayalit kristallisiert im orthorhombischen Kristallsystem und entwickelt meist tafelige bis prismatische Kristalle, aber auch körnige bis massige Aggregate von blassgelber, grünlichgelber, gelbbrauner und rotbrauner bis schwarzer Farbe.

Etymologie und Geschichte[Bearbeiten | Quelltext bearbeiten]

Erstmals gefunden wurde der Fayalit 1840 auf der Ilha do Faial (alte Schreibweise Fayal), einer zu Portugal gehörenden Azoreninsel, und beschrieben von Christian Gottlob Gmelin, der das Mineral nach seiner Typlokalität benannte.

Klassifikation[Bearbeiten | Quelltext bearbeiten]

In der alten (8. Auflage) und neuen Systematik der Minerale nach Strunz (9. Auflage) gehört der Fayalit zur Abteilung der „Inselsilikate (Nesosilikate)“ und dort zur Olivingruppe, gebildet aus den Mineralen Fayalit, Forsterit, Laihunit, Liebenbergit und Tephroit.

Die überarbeitete 9. Auflage der Strunz'schen Mineralsystematik unterteilt diese Abteilung allerdings präziser nach An- oder Abwesenheit weiterer Anionen und der Koordination der beteiligten Kationen. Der Fayalit steht entsprechend in der Unterabteilung der „Inselsilikate ohne weitere Anionen; mit Kationen in oktaedrischer [6] Koordination“ und ist dort immer noch Mitglied der Olivingruppe, die allerdings um die Minerale Glaukochroit und Kirschsteinit erweitert wurde.

Die im englischen Sprachraum gebräuchliche Systematik der Minerale nach Dana ordnet den Fayalit ähnlich wie die neue Strunz'sche Mineralsystematik in die Abteilung der „Inselsilikate: SiO4-Gruppen mit allen Kationen nur in oktaedrischer [6]-Koordination“. Die dort ebenfalls anzutreffende Olivingruppe besteht wie in der alten Strunz'schen Systematik aus den Mitgliedern Fayalit, Forsterit, Laihunit, Liebenbergit und Tephroit, allerdings erweitert um den Olivin, für den die Anerkennung durch die IMA/CNMNC noch fehlt.

Chemismus[Bearbeiten | Quelltext bearbeiten]

In reiner Form besteht Fayalit aus 70,51 % FeO und 29,49 % SiO2, was allerdings nur bei synthetischem Fayalit erreicht wird. Natürlicher Fayalit kann bis zu 10 % Forsterit enthalten. Des Weiteren wurden Fremdbeimengungen von einigen Prozent MgO, MnO, ZnO, Al2O3 sowie Chrom, Titan, Cobalt, Calcium und andere beobachtet.[5]

Fayalit (Fe22+[SiO4]) ist das Eisen-Analogon zum Magnesiumsilikat Forsterit (Mg22+[SiO4]) sowie zum Mangansilikat Tephroit (Mn22+[SiO4]) und bildet mit diesen eine lückenlose, isomorphe Mischreihe bis hin zu tiefen Temperaturen.[6]

Die Zwischenglieder der Mischreihe Fayalit–Forsterit erhielten – ähnlich wie die der Plagioklase – bei festgelegter Zusammensetzung eigenständige Namen:[7]

Fe22+[SiO4] Name Mg22+[SiO4]
90–100 % Fayalit 0-10 %
70– 90 % Ferrohortonolith 10–30 %
50– 70 % Hortonolith 30–50 %
30– 50 % Hyalosiderit 50–70 %
10– 30 % Chrysolith 70–90 %
0– 10 % Forsterit 90–100 %

Kristallstruktur[Bearbeiten | Quelltext bearbeiten]

Fayalit kristallisiert orthorhombisch in der Raumgruppe Pbnm (Raumgruppen-Nr. 62, Stellung 3)Vorlage:Raumgruppe/62.3 mit den Gitterparametern a = 4,82 Å; b = 10,48 Å und c = 6,09 Å sowie vier Formeleinheiten pro Elementarzelle.[1]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

In der Natur ist Fayalit nur selten in reiner Form zu finden, sondern fast immer mit schwankenden Gehalten an Forsterit und/oder Tephroit. Farbgebend sind die im Fayalit (braun bis schwarz) überwiegenden Eisen-Ionen bzw. die im Tephroit (grau, rot) überwiegenden Mangan-Ionen. Je nach prozentualem Anteil von Forsterit, der in reinem Zustand farblos ist, werden die Farben des Fayalit entsprechend abgeschwächt.

Das Mineral ist löslich in Salzsäure, wobei sich SiO2-Gel bildet. Vor dem Lötrohr schmilzt Fayalit zu einem schwarzen, magnetischen Glas.[5]

Modifikationen und Varietäten[Bearbeiten | Quelltext bearbeiten]

Molvolumen als Funktion des Drucks bei Zimmertemperatur

Bei hohem Druck wandelt sich Fayalit durch Phasentransformation in die Hochdruck-Modifikation Ahrensit um. Diese stellt das eisenhaltige Analogon zu Ringwoodit dar, das heißt anders als beim Forsterit existiert keine zu Wadsleyit analoge Zwischenform. Unter den Bedingungen, die im oberen Erdmantel herrschen, findet der Übergang von Fayalit nach Ahrensit bei etwa 6 bis 7 GPa statt, also bei deutlich niedrigerem Druck als die Phasentransformationen des Forsterits.[8] In Hochdruckexperimenten kann der Phasenübergang aber mit Verzögerung stattfinden, so dass Fayalit bei Raumtemperatur bis zu fast 35 GPa metastabil bleiben kann (siehe Abbildung). Er wird dann jedoch eher amorph, als dass er in eine kristalline Struktur wie Ahrensit übergeht.

Bisher sind zwei manganhaltige Fayalit-Varietät bekannt, die als Hortonolith und Knebelit (benannt nach Walther von Knebel) bezeichnet werden.[9]

Bildung und Fundorte[Bearbeiten | Quelltext bearbeiten]

Fayalit zwischen Sanidin-Kristallen

Fayalit bildet sich in ultramafischen Vulkaniten und Plutoniten. Dort tritt er in Paragenese mit einer ganzen Reihe von Mineralen wie unter anderem mit Almandin, verschiedenen Mineralen der Amphibolgruppe, Apatit, Arfvedsonit, Augit, Grunerit, Hedenbergit, Ilmenit, Magnetit, Mikroklin, Plagioklas, Quarz, Sanidin, Spinell und Tridymit auf.

Als eher seltene Mineralbildung kann Fayalit an verschiedenen Fundorten zum Teil reichlich vorhanden sein, insgesamt ist er aber wenig verbreitet. Bisher (Stand 2014) sind rund 300 Fundorte[10] für Fayalit bekannt. Neben seiner Typlokalität Ilha do Faial wurde Fayalit in Portugal noch auf Pico sowie am Água de Pau auf São Miguel gefunden.

Weitere Fundorte sind Ägypten, Algerien, Antarktis, Äthiopien, Australien, Brasilien, Chile, China, Deutschland, Eritrea, Finnland, Frankreich, Französisch-Polynesien, Grönland, Indien, Indonesien, Irland, Israel, Italien, Japan, Kamerun, Kanada, Madagaskar, Marokko, Mexiko, Mongolei, Myanmar, Namibia, Neuseeland, Niederlande, Nigeria, Norwegen, Oman, Österreich, Rumänien, Russland, Saudi-Arabien, Schweden, Schweiz, Slowakei, Spanien, St. Lucia, Südafrika, Tadschikistan, Tschechien, Ukraine, Ungarn, Vereinigtes Königreich (Großbritannien) und die Vereinigten Staaten (USA).[11]

Auch in Gesteinsproben, die von den Apollo 11- und Apollo 14-Missionen vom Mond mitgebracht wurden, konnte Fayalit nachgewiesen werden.

Zudem entsteht Fayalit synthetisch bei der Kristallisation eisenreicher Schlacke bei der Verhüttung von Eisenerzen.[5]

Verwendung[Bearbeiten | Quelltext bearbeiten]

Als Schmuckstein[Bearbeiten | Quelltext bearbeiten]

Die Minerale der Olivingruppe werden bei guter Qualität überwiegend zu Schmucksteinen verarbeitet. Klare Varietäten erhalten dabei meist einen Facettenschliff in unterschiedlicher Form, trübe Varietäten eher einen Cabochon-Schliff. Im Handel sind sie unter der Bezeichnung „Peridot“ oder „Chrysolith“ erhältlich.[12]

Verwechslungsgefahr besteht aufgrund der Farbe vor allem mit Beryll, Chrysoberyll, Demantoid, Diopsid, Prasiolith, Prehnit, Sinhalit, Smaragd, Turmalin und Vesuvianit.[12]

Um farbschwache Steine aufzuwerten, wird ihnen in Ring- oder Anhängerfassungen gelegentlich eine grüne Folie untergelegt. Auch Imitationen aus gefärbtem Glas oder synthetischem Korund bzw. Spinell werden von unseriösen Händlern als Peridot ausgegeben. Im Gegensatz zu diesen ist der Fayalit bzw. seine Mischkristalle an der starken Doppelbrechung zu erkennen, die bei der Sicht durch dickere, facettierte Steine an der Verdopplung der unteren Facettenkanten auch ohne Lupe zu erkennen ist.[12]

In Hochtemperaturexperimenten[Bearbeiten | Quelltext bearbeiten]

Fayalit hat die Eigenschaft, bei hohen Temperaturen mit Sauerstoff reversibel zu reagieren:[13]

Diese Reaktion kann ausgenutzt werden, um bei Hochtemperaturexperimenten einen definierten Partialdruck bzw. eine definierte Fugazität von Sauerstoff einzustellen. Das System wird auch als „FMQ-Puffer“ (Fayalit-Magnetit/Quarz-Puffer) bezeichnet.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Fayalite – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d Hugo Strunz, Ernest H. Nickel: Strunz Mineralogical Tables. Chemical-structural Mineral Classification System. 9. Auflage. E. Schweizerbart’sche Verlagsbuchhandlung (Nägele u. Obermiller), Stuttgart 2001, ISBN 3-510-65188-X, S. 538.
  2. Webmineral – Fayalite (englisch)
  3. a b c Fayalite. In: John W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, Monte C. Nichols (Hrsg.): Handbook of Mineralogy, Mineralogical Society of America. 2001 (handbookofmineralogy.org [PDF; 74 kB]).
  4. a b c d e Mindat – Fayalite (englisch)
  5. a b c Hans Jürgen Rösler: Lehrbuch der Mineralogie. 4. durchgesehene und erweiterte Auflage. Deutscher Verlag für Grundstoffindustrie (VEB), Leipzig 1987, ISBN 3-342-00288-3, S. 459.
  6. Helmut Schröcke, Karl-Ludwig Weiner: Mineralogie. Ein Lehrbuch auf systematischer Grundlage. de Gruyter, Berlin; New York 1981, ISBN 3-11-006823-0, S. 655.
  7. Helmut Schröcke, Karl-Ludwig Weiner: Mineralogie. Ein Lehrbuch auf systematischer Grundlage. de Gruyter, Berlin; New York 1981, ISBN 3-11-006823-0, S. 657.
  8. D. C. Presnall: Phase diagrams of Earth-forming minerals. In: T. J. Ahrens (Hrsg.): Mineral Physics & Crystallography – A Handbook of Physical Constants (= AGU Reference Shelf). Nr. 2. American Geophysical Union, Washington, D.C. 1995, ISBN 0-87590-852-7, S. 248–268.
  9. Stefan Weiß: Das große Lapis Mineralienverzeichnis. Alle Mineralien von A – Z und ihre Eigenschaften. 6. vollkommen neu bearbeitete und ergänzte Auflage. Weise, München 2014, ISBN 978-3-921656-80-8, S. 115, 138.
  10. Mindat - Anzahl der Fundorte für Fayalit
  11. Fundorteliste für Fayalit beim Mineralienatlas und bei Mindat
  12. a b c Walter Schumann: Edelsteine und Schmucksteine. Alle Arten und Varietäten. 1900 Einzelstücke. 16. überarbeitete Auflage. BLV Verlag, München 2014, ISBN 978-3-8354-1171-5, S. 174.
  13. Martin Okrusch, Siegfried Matthes: Mineralogie. Eine Einführung in die spezielle Mineralogie, Petrologie und Lagerstättenkunde. 7., vollständige überarbeitete und aktualisierte Auflage. Springer, Berlin [u.a.] 2005, ISBN 3-540-23812-3, S. 372.