Korrelationskoeffizient

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Fisher-Transformation)
Wechseln zu: Navigation, Suche

Der Korrelationskoeffizient (auch: Korrelationswert) oder die Produkt-Moment-Korrelation (von Bravais und Pearson, daher auch Bravais-Pearson-Korrelation oder Pearson-Korrelation genannt) ist ein dimensionsloses Maß für den Grad des linearen Zusammenhangs zwischen zwei mindestens intervallskalierten Merkmalen. Er kann Werte zwischen −1 und +1 annehmen. Bei einem Wert von +1 (bzw. −1) besteht ein vollständig positiver (bzw. negativer) linearer Zusammenhang zwischen den betrachteten Merkmalen. Wenn der Korrelationskoeffizient den Wert 0 aufweist, hängen die beiden Merkmale überhaupt nicht linear voneinander ab. Allerdings können diese ungeachtet dessen in nichtlinearer Weise voneinander abhängen. Damit ist der Korrelationskoeffizient kein geeignetes Maß für die (reine) stochastische Abhängigkeit von Merkmalen.

Je nachdem, ob der lineare Zusammenhang zwischen zeitgleichen Messwerten zweier verschiedener Merkmale oder derjenige zwischen zeitlich verschiedenen Messwerten eines einzigen Merkmals betrachtet wird, spricht man entweder von der Kreuzkorrelation oder von der Kreuzautokorrelation (siehe auch Zeitreihenanalyse).

Korrelationskoeffizienten wurden mehrfach – so schon von Ferdinand Tönnies – entwickelt, heute wird allgemein der von Karl Pearson verwendet.

Definitionen[Bearbeiten | Quelltext bearbeiten]

Korrelationskoeffizient für Zufallsvariablen[Bearbeiten | Quelltext bearbeiten]

Für zwei quadratisch integrierbare Zufallsvariablen und mit jeweils positiver Standardabweichung und Kovarianz ist der Korrelationskoeffizient (Pearsonscher Maßkorrelationskoeffizient) definiert durch

Weitere übliche Schreibweisen sind und .

Ferner heißen unkorreliert, falls .

Empirischer Korrelationskoeffizient[Bearbeiten | Quelltext bearbeiten]

Für eine Messreihe von gepaarten Ausprägungen wird der empirische Korrelationskoeffizient berechnet durch

.

Dabei sind

und

die empirischen Mittelwerte anhand der Messreihe.

Im Rahmen der induktiven Statistik ist man an einer erwartungstreuen Schätzung der wahren, unbekannten Korrelation in der Grundgesamtheit interessiert. Daher werden in die Formel der Korrelation erwartungstreue Schätzer der Varianzen und der Kovarianz eingesetzt. Dies führt zur Formel:

.

Sind diese Messreihenwerte z-transformiert, also , wobei die erwartungstreue Schätzung der Streuung bezeichnet, gilt auch:

Da man in der deskriptiven Statistik nur den Zusammenhang zwischen zwei Variablen, als normierte mittlere gemeinsame Streuung, in der Stichprobe beschreiben will, wird die Korrelation auch berechnet als

.

Da sich die Werte bzw. aus den Formeln herauskürzen, ergibt sich in beiden Fällen der gleiche Wert des Koeffizienten.

Eine Vereinfachung der obigen Formel zur leichteren Berechnung einer Korrelation lautet wie folgt:[1]

.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Beispielsdatensatz mit Mittelwerten und Korrelation.

Für die elf Beobachtungspaare sind die Werte in der unten stehenden Tabelle in der zweiten und dritten Spalte gegeben. Die Mittelwerte ergeben sich zu und und damit können die vierte und fünfte Spalte der Tabelle berechnet werden. Die sechste Spalte enthält das Produkt der vierten mit der fünften Spalte und damit ergibt sich . Die beiden letzten Spalten enthalten jeweils die Quadrate der vierten und fünften Spalte und es ergibt sich und .

Damit ergibt sich die Korrelation zu .

1 10,00 8,04 1,00 0,54 0,54 1,00 0,29
2 8,00 6,95 -1,00 -0,55 0,55 1,00 0,30
3 13,00 7,58 4,00 0,08 0,32 16,00 0,01
4 9,00 8,81 0,00 1,31 0,00 0,00 1,71
5 11,00 8,33 2,00 0,83 1,66 4,00 0,69
6 14,00 9,96 5,00 2,46 12,30 25,00 6,05
7 6,00 7,24 -3,00 -0,26 0,78 9,00 0,07
8 4,00 4,26 -5,00 -3,24 16,20 25,00 10,50
9 12,00 10,84 3,00 3,34 10,02 9,00 11,15
10 7,00 4,82 -2,00 -2,68 5,36 4,00 7,19
11 5,00 5,68 -4,00 -1,82 7,28 16,00 3,32
99,00 82,51 55,01 110,00 41,27
Alle Werte in der Tabelle sind auf zwei Stellen nach dem Komma gerundet!

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Mit der Definition des Korrelationskoeffizienten gilt unmittelbar

  • bzw.
  • .
  • .

Mit der Cauchy-Schwarzschen Ungleichung sieht man, dass

  • .

Durch Optimieren ergibt sich, dass fast sicher genau dann, wenn .

Sind die Zufallsgrößen und stochastisch voneinander unabhängig, dann gilt:

  • .

Der Umkehrschluss ist allerdings nicht zulässig, denn es können Abhängigkeitsstrukturen vorliegen, die der Korrelationskoeffizient nicht erfasst. Für die multivariate Normalverteilung gilt jedoch: Die Zufallsvariablen und sind genau dann stochastisch unabhängig, wenn sie unkorreliert sind. Wichtig ist hierbei die Voraussetzung, dass und gemeinsam normalverteilt sind. Es reicht nicht aus, dass und jeweils normalverteilt sind.

Voraussetzungen für die Pearson-Korrelation[Bearbeiten | Quelltext bearbeiten]

Der Korrelationskoeffizient nach Pearson erlaubt Aussagen über statistische Zusammenhänge unter folgenden Bedingungen:

Skalierung[Bearbeiten | Quelltext bearbeiten]

Der Pearsonsche Korrelationskoeffizient liefert korrekte Ergebnisse bei intervallskalierten und bei dichotomen Daten. Für niedrigere Skalierungen existieren andere Korrelationskonzepte (z. B. Rangkorrelationskoeffizienten).

Normalverteilung[Bearbeiten | Quelltext bearbeiten]

Für die Durchführung von standardisierten Signifikanztests über den Korrelationskoeffizienten in der Grundgesamtheit müssen beide Variablen annähernd normalverteilt sein. Bei zu starken Abweichungen von der Normalverteilung muss auf den Rangkorrelationskoeffizienten zurückgegriffen werden. (Alternativ kann man auch, falls die Verteilung bekannt ist, angepasste (nichtstandardisierte) Signifikanztests verwenden.)

Linearitätsbedingung[Bearbeiten | Quelltext bearbeiten]

Zwischen den Variablen x und y wird ein linearer Zusammenhang vorausgesetzt. Diese Bedingung wird in der Praxis häufig ignoriert; daraus erklären sich mitunter enttäuschend niedrige Korrelationen, obwohl der Zusammenhang zwischen x und y bisweilen trotzdem hoch ist. Ein einfaches Beispiel für einen hohen Zusammenhang trotz niedrigem Korrelationskoeffizienten ist die Fibonacci-Folge. Alle Zahlen der Fibonacci-Folge sind durch ihre Position in der Reihe durch eine mathematische Formel exakt determiniert (siehe die Formel von Jacques-Philippe-Marie Binet in Fibonacci-Folge). Der Zusammenhang zwischen der Positionsnummer einer Fibonacci-Zahl und der Größe der Zahl ist vollkommen determiniert. Dennoch beträgt der Korrelationskoeffizient zwischen den Ordnungsnummern der ersten 360 Fibonacci-Zahlen und den betreffenden Zahlen nur 0,20; das bedeutet, dass in erster Näherung nicht viel mehr als 4 % der Varianz durch den Korrelationskoeffizienten erklärt werden und 96 % der Varianz „unerklärt“ bleiben. Der Grund ist die Vernachlässigung der Linearitätsbedingung, denn die Fibonacci-Zahlen wachsen progressiv an: In solchen Fällen ist der Korrelationskoeffizient nicht korrekt interpretierbar. Eine mögliche Alternative, welche ohne die Voraussetzung der Linearität des Zusammenhangs auskommt, ist die Transinformation.

Signifikanzbedingung[Bearbeiten | Quelltext bearbeiten]

Ein Korrelationskoeffizient > 0 bei positiver Korrelation bzw. < 0 bei negativer Korrelation zwischen x und y berechtigt nicht a priori zur Aussage, es bestehe ein statistischer Zusammenhang zwischen x und y. Eine solche Aussage ist nur gültig, wenn der ermittelte Korrelationskoeffizient signifikant ist. Der Begriff „signifikant“ bedeutet hier „signifikant von Null verschieden“. Je höher die Anzahl der Wertepaare (x, y) und das Signifikanzniveau sind, desto niedriger darf der Absolutbetrag eines Korrelationskoeffizienten sein, um zur Aussage zu berechtigen, zwischen x und y gebe es einen linearen Zusammenhang. Ein t-Test zeigt, ob die Abweichung des ermittelten Korrelationskoeffizienten von Null auch signifikant ist.

Bildliche Darstellung und Interpretation[Bearbeiten | Quelltext bearbeiten]

Verschiedene Punktwolken zusammen mit dem für sie jeweils berechenbaren Pearson'schen Korrelationskoeffizienten. Man beachte, dass letzterer zwar die Streuung der Punktwolke sowie die generelle Richtung der linearen Abhängigkeit von x und y widerspiegelt (obere Zeile), nicht aber deren Steilheit (mittlere Zeile). Verläuft die Punktwolke beispielsweise exakt waagerecht (mittleres Bild), kann aufgrund von Var(Y) = 0 gar kein Korrelationskoeffizient berechnet werden. Ein weiterer Schwachpunkt des Pearson'schen Korrelationskoeffizienten sind nichtlineare Abhängigkeiten (untere Zeile), die mit Hilfe dieses Koeffizienten meist gar nicht oder nur unzureichend erfasst werden können.

Sind zwei Merkmale vollständig miteinander korreliert (d. h. ), so liegen alle Messwerte in einem 2-dimensionalen Koordinatensystem auf einer Geraden. Bei einer perfekten positiven Korrelation () steigt die Gerade. Wenn die Merkmale perfekt negativ miteinander korreliert sind (), sinkt die Gerade. Besteht zwischen zwei Merkmalen eine sehr hohe Korrelation, sagt man oft auch, sie erklären dasselbe.

Je näher der Betrag von bei 0 liegt, desto kleiner der lineare Zusammenhang. Für kann der statistische Zusammenhang zwischen den Messwerten nicht mehr durch eine eindeutig steigende oder sinkende Gerade dargestellt werden. Dies ist z. B. der Fall, wenn die Messwerte rotationssymmetrisch um den Mittelpunkt verteilt sind. Dennoch kann dann ein nicht-linearer statistischer Zusammenhang zwischen den Merkmalen gegeben sein. Umgekehrt gilt jedoch: Wenn die Merkmale statistisch unabhängig sind, nimmt der Korrelationskoeffizient stets den Wert 0 an.

Der Korrelationskoeffizient ist kein Indiz eines ursächlichen (d. h. kausalen) Zusammenhangs zwischen den beiden Merkmalen: Die Besiedlung durch Störche im Süd-Burgenland korreliert zwar positiv mit der Geburtenzahl der dortigen Einwohner, doch das bedeutet noch keinen „kausalen Zusammenhang“, trotzdem ist ein „statistischer Zusammenhang“ gegeben. Dieser leitet sich aber aus einem anderen, weiteren Faktor ab, wie dies im Beispiel durch Industrialisierung oder der Wohlstandssteigerung begründet sein kann, die einerseits den Lebensraum der Störche einschränkten und andererseits zu einer Verringerung der Geburtenzahlen führten. Korrelationen dieser Art werden Scheinkorrelationen genannt.

Der Korrelationskoeffizient kann kein Indiz über die Richtung eines Zusammenhanges sein: Steigen die Niederschläge durch die höhere Verdunstung oder steigt die Verdunstung an, weil die Niederschläge mehr Wasser liefern? Oder bedingen sich beide gegenseitig, also möglicherweise in beiderlei Richtung?

Ob ein gemessener Korrelationskoeffizient als groß oder klein interpretiert wird, hängt stark von der Art der untersuchten Daten ab. Bei psychologischen Fragebogendaten werden z. B. Werte bis ca. 0,3 häufig als klein angesehen, ab ca. 0,5 als gut, während man ab ca. 0,7–0,8 von einer (sehr) hohen Korrelation spricht.

Das Quadrat des Korrelationskoeffizienten r² nennt man Bestimmtheitsmaß. Es gibt in erster Näherung an, wie viel Prozent der Varianz, d. h. Streuung, der einen Variable durch die Streuung der anderen Variable erklärt werden können. Beispiel: Bei r = 0,3 werden 9 % (= 0,3² = 0,09) der gesamten auftretenden Varianz im Hinblick auf einen statistischen Zusammenhang erklärt.

Fisher-Transformation[Bearbeiten | Quelltext bearbeiten]

Empirische Korrelationskoeffizienten sind nicht normalverteilt. Vor der Berechnung von Konfidenzintervallen muss daher erst eine Korrektur der Verteilung mit Hilfe der Fisher-Transformation vorgenommen werden. Wenn die Daten und aus einer zumindest annähernd bivariat normalverteilten Grundgesamtheit stammen, dann ist der empirische Korrelationskoeffizient rechtssteil unimodal verteilt.

Die Fisher-Transformation des Korrelationskoeffizienten lautet dann:

.

ist annähernd normalverteilt mit der Standardabweichung und Mittelwert

wobei hier für den Korrelationskoeffizienten der Grundgesamtheit steht. Das auf Basis dieser Normalverteilung errechnete -Konfidenzintervall der Form

wird sodann retransformiert zu

Das -Konfidenzintervall für die Korrelation lautet sodann

.

Konfidenzintervalle von Korrelationen liegen in aller Regel unsymmetrisch bezüglich ihres Mittelwerts.

Test des Korrelationskoeffizienten / Steigers Z-Test[Bearbeiten | Quelltext bearbeiten]

Folgende Tests (Steigers Z-Test[2]) können durchgeführt werden, wenn die Variablen und annähernd bivariat normalverteilt sind:

vs. (zweiseitige Hypothese)
vs. (rechtsseitige Hypothese)
vs. (linksseitige Hypothese)

Die Teststatistik ist

verteilt ( ist die Fisher-Transformation, siehe vorherigen Abschnitt).

Im Spezialfall der Hypothese vs. ergibt sich die Teststatistik als

verteilt.

Partieller Korrelationskoeffizient[Bearbeiten | Quelltext bearbeiten]

Eine Korrelation zwischen zwei Zufallsvariablen X und Y kann unter Umständen auf einen gemeinsamen Einfluss einer dritten Zufallsvariablen U zurückgeführt werden. Um solch einen Effekt zu messen, gibt es das Konzept der partiellen Korrelation (auch Partialkorrelation genannt). Die „partielle Korrelation von X und Y unter U“ ist gegeben durch

Das folgende Bild zeigt ein Beispiel:

.

Zwischen X und Y besteht eine merkliche Korrelation. Betrachtet man die beiden rechten Punktwolken, so erkennt man, dass X und Y jeweils stark mit U korrelieren. Die beobachtete Korrelation zwischen X und Y basiert nun fast ausschließlich auf diesem Effekt.

Beispiel aus dem Alltag:

In einer Firma werden zufällig Mitarbeiter ausgewählt und die Körpergröße bestimmt. Zudem muss jeder Befragte sein Einkommen angeben. Das Ergebnis der Untersuchung ist, dass Körpergröße und Einkommen positiv korrelieren, also größere Personen auch mehr verdienen. Bei einer genaueren Untersuchung stellt sich jedoch heraus, dass der Zusammenhang auf die Drittvariable Geschlecht zurückgeführt werden kann. Frauen sind im Durchschnitt kleiner als Männer, verdienen aber auch oftmals weniger. Berechnet man nun die Partialkorrelation zwischen Einkommen und Körpergröße unter Kontrolle des Geschlechts, so verschwindet der Zusammenhang. Größere Männer verdienen demnach beispielsweise nicht mehr als kleinere Männer. Dieses Beispiel ist fiktiv und der Zusammenhang in der Realität komplizierter,[3] es kann jedoch die Idee der Partialkorrelation veranschaulichen.

Robuste Korrelationskoeffizienten[Bearbeiten | Quelltext bearbeiten]

Der Korrelationskoeffizient nach Pearson ist empfindlich gegenüber Ausreißern. Deswegen wurden verschiedene robuste Korrelationskoeffizienten entwickelt, z. B.

Quadrantenkorrelation[Bearbeiten | Quelltext bearbeiten]

Die Quadrantenkorrelation ergibt sich aus der Anzahl der Beobachtungen in den vier vom Medianenpaar bestimmten Quadranten. Dazu zählt man, wie viele der Beobachtungen in den Quadranten I und III liegen () bzw. wie viele sich in den Quadranten II und IV befinden (). Die Beobachtungen in den Quadranten I und III liefern jeweils einen Beitrag von und die Beobachtungen in den Quadranten II und IV von :

mit die Signumfunktion, die Zahl der Beobachtungen und und die Mediane der Beobachtungen. Da jeder Wert von entweder , oder ist, spielt es keine Rolle wie weit eine Beobachtung von den Medianen entfernt ist.

Über die Quadrantenkorrelation kann mit Hilfe des Median-Tests die Hypothesen vs. überprüft werden. Ist die Zahl der Beobachtungen mit , die Zahl der Beobachtungen mit und , dann ist die Teststatistik

verteilt.

Schätzung der Korrelation zwischen nicht-metrischen Variablen[Bearbeiten | Quelltext bearbeiten]

Die Schätzung der Korrelation mit dem Korrelationskoeffizient nach Pearson setzt voraus, dass beide Variablen intervallskaliert und normalverteilt sind. Dagegen können die Rangkorrelationskoeffizienten immer dann zur Schätzung der Korrelation verwendet werden, wenn beide Variablen mindestens ordinalskaliert sind. Die Korrelation zwischen einer dichotomen und einer intervallskalierten und normalverteilten Variablen kann mit der punktbiserialen Korrelation geschätzt werden. Die Korrelation zwischen zwei dichotomen Variablen kann mit dem Vierfelderkorrelationskoeffizienten geschätzt werden. Hier kann man die Unterscheidung treffen, dass bei zwei natürlich dichotomen Variablen die Korrelation sowohl durch den Odds Ratio (OR) als auch durch den Phi-Koeffizient berechnet werden kann. Eine Korrelation aus zwei ordinal oder einer intervall und einer ordinal gemessenen Variablen ist mit Spearmans Rho oder Kendalls Tau berechenbar.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Francis Galton: Co-relations and their measurement, chiefly from anthropometric data. In: Proceedings of the Royal Society. Band 45, Nr. 13, 5. Dezember 1888, S. 135–145 (galton.org [PDF; abgerufen am 12. September 2012]).
  • Diedenhofen, Birk & Musch, Jochen (2015): cocor: A Comprehensive Solution for the Statistical Comparison of Correlations. PLoS ONE, 10(4): e0121945.
  • Hartung, Joachim: Statistik, 12. Auflage, Oldenbourg Verlag 1999, S. 561 f, ISBN 3-486-24984-3
  • Zöfel, Peter: Statistik für Psychologen, Pearson Studium 2003, München, S. 154.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wiktionary: Korrelationskoeffizient – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Jürgen Bortz, Christof Schuster: Statistik für Human- und Sozialwissenschaftler. 7. Auflage. Springer-Verlag GmbH, Berlin/Heidelberg/New York 2010, ISBN 978-3-642-12769-4.
  2. Steiger, J.H. (1980): Tests for comparing elements of a correlation matrix, Psychological Bulletin, 87, 245–251.
  3. „Der Einfluss der Körpergröße auf Lohnhöhe und Berufswahl: Aktueller Forschungsstand und neue Ergebnisse auf Basis des Mikrozensus“