Flavour

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel erläutert die Eigenschaft von Elementarteilchen. Für weitere Bedeutungen siehe Flavor

Flavour oder Flavor (engl. für Aroma oder Geschmack) ist eine der Quantenzahlen von Elementarteilchen (Quarks und Leptonen) im Zusammenhang mit der schwachen Wechselwirkung. In der Theorie der elektroschwachen Wechselwirkung ist diese Symmetrie jedoch gebrochen, damit ist Flavour keine Erhaltungszahl, und es existieren flavourändernde Prozesse. In der Quantenchromodynamik dagegen ist es eine globale Symmetrie, und Flavour bleibt bei allen Prozessen erhalten, die nur der starken Wechselwirkung unterliegen.

Die Flavour-Quantenzahlen der Quarks werden nach den jeweiligen Quarks als Isospin (für up- und down-Quarks), Charm, Strangeness, Topness (auch Truth) und Bottomness (auch Beauty) bezeichnet.

Die Bezeichnung flavour wurde erstmals 1968 im Zusammenhang mit dem Quark-Modell der Hadronen verwendet. Der Name soll von Murray Gell-Mann und Harald Fritzsch erfunden worden sein, als sie auf dem Weg zum Mittagessen an einer Eisdiele (Baskin-Robbins) vorbeigingen, welche 31 verschiedene Geschmackssorten anbot.

Quark-Flavours[Bearbeiten]

Es gibt insgesamt 6 verschiedene Quark-Flavours (je 2 pro Generation):

Name Zeichen Baryonzahl, Ladung Flavour-Quantenzahlen Hyperladungen
up u B=1/3, Q=2/3 I3=1/2 Y=1/3, YW=1/3
down d B=1/3, Q=−1/3 I3=−1/2 Y=1/3, YW=1/3
charm c B=1/3, Q=2/3 I3=0, C=1 Y=4/3, YW=1/3
strange s B=1/3, Q=−1/3 I3=0, S=−1 Y=−2/3, YW=1/3
top (oder truth) t B=1/3, Q=2/3 I3=0, T=1 Y=4/3, YW=1/3
bottom (oder beauty) b B=1/3, Q=−1/3 I3=0, B'=−1 Y=−2/3, YW=1/3

Hier ist B die Baryonenzahl, Q die elektrische Ladung (in Einheiten von e), I3 die Isospin-3-Komponente, S die Strangeness, C der Charm, B' die Bottomness (der Apostroph in B' dient zur Unterscheidung von der Baryonzahl B), T die Topness, Y die Hyperladung und YW die schwache Hyperladung.

Dabei sind die Flavour-Quantenzahlen über die Anzahlen der jeweiligen Quarks definiert:

I_z = \frac{1}{2}\Big((n_u - n_{\bar u}) - (n_d - n_{\bar d})\Big)
C = n_c - n_{\overline{c}}
S = n_{\overline{s}} - n_s
T = n_t - n_{\overline{t}}
B' = n_{\overline{b}} - n_b

Die Vorzeichenkonvention ist dabei so gewählt, dass für Quarks vom Up-Typ (u, c, t) die jeweilige Flavour-Quantenzahl positiv ist, hingegen für Quarks vom Down-Typ (d, s, b) negativ. Für die Antiquarks ist das Vorzeichen immer gerade andersherum als für das jeweilige Quark, für alle anderen Elementarteilchen ist das jeweilige Flavour 0.

Hadronen erhalten ihren Flavour von den Valenzquarks, dies ist die Grundlage des Eightfold Way und des Quark-Modells.

Für Hadronen und Quarks gilt die Gell-Mann-Nishijima-Formel:

Q = I_z + Y/2 \,\!

mit

Y = B + S + C + B' + T. \,\!

Geschichte[Bearbeiten]

Gewöhnliche Materie, die aus Protonen und Neutronen besteht, wird durch den Isospin, bzw. die beiden Quark-Flavours up (u) und down (d) beschrieben. Seltsame Materie machte später die Einführung des s-Quarks und der ihm entsprechenden Quantenzahl Strangeness nötig. Entsprechend der Isospin-Symmetrie vermuteten 1964 Bjørken and Glashow, dass es als Partner zur Strangeness eine weitere Quantenzahl geben müsse, die sie charm nannten.[1] Das von ihnen postulierte Orthocharmonium (analog dem Orthopositronium) wurde 1974 beim BNL als J und beim SLAC unter dem Namen ψ entdeckt (J/ψ-Meson).

Lepton-Flavours[Bearbeiten]

Leptonen treten ebenfalls in sechs Flavours (je zwei pro Leptonenfamilie) auf:

Name Zeichen Flavour-Quantenzahlen Ladung, Hyperladung
Elektron e Le=1 Q=−1, YW=−1
Elektron-Neutrino νe Le=1 Q=0, YW=−1
Myon μ Lμ=1 Q=−1, YW=−1
Myon-Neutrino νμ Lμ=1 Q=0, YW=−1
Tau τ Lτ=1 Q=−1, YW=−1
Tau-Neutrino ντ Lτ=1 Q=0, YW=−1

Lf ist hier die jeweilige Leptonenfamilienzahl für die Familien f=e, μ und τ. Ihre Summe ergibt die Leptonenzahl L.

Antiteilchen haben gegenüber den korrespondierenden Teilchen entgegengesetzte Quantenzahlen. So hat zum Beispiel das Positron (das Anti-Elektron) die Quantenzahlen Le=−1 und Q=1.

Generationen[Bearbeiten]

Wenn man (Quark-)Generationen und (Leptonen-)Familien als prinzipiell gleichwertig betrachtet, dann lassen sich auch die Leptonen in up-artige (Neutrinos) und down-artige (massebehaftete Leptonen) einteilen. Dabei ist die Differenz der Ladungen zwischen einem up-artigen und einem down-artigen Flavour jeweils 1. Damit lassen sich die Quarks und Leptonen in die 3 Familien oder Generationen mit je einem up-artigen und einem down-artigen Teilchen einteilen:


\begin{array}{ccccccc}
\mathrm{Q} & \mathrm{Y_W}  & & & & & \\
\begin{array}{c}
+\frac{2}{3}\\
-\frac{1}{3}
\end{array} &
\frac{1}{3} &
\left(\begin{array}{c}
u\\
d
\end{array}\right)&
\left(\begin{array}{c}
c\\
s
\end{array}\right)&
\left(\begin{array}{c}
t\\
b
\end{array}\right)&
\begin{array}{c}
\text{up-artig}\\
\text{down-artig}
\end{array}&
\text{Quarks}, B=1/3\\
\\
\begin{array}{r}
0\\
-1
\end{array} &
-1 &
\left(\begin{array}{c}
\nu_e\\
e^-
\end{array}\right)&
\left(\begin{array}{c}
\nu_\mu\\
\mu^-
\end{array}\right)&
\left(\begin{array}{c}
\nu_\tau\\
\tau^-
\end{array}\right)&
\begin{array}{c}
\text{up-artig}\\
\text{down-artig}
\end{array}&
\text{Leptonen}, L=1\\
\\
\end{array}

Die Anzahl der Familien von Quarks und Leptonen muss übereinstimmen um chirale Anomalien zu verhindern.

Ein Fermion des jeweiligen Flavours ist ein Eigenzustand des schwach wechselwirkenden Teils des Hamilton-Operators: Jedes Teilchen wechselwirkt in charakteristischer Weise mit den Vektorbosonen W± und Z0. Andererseits ist ein Fermion mit bestimmter Masse (also ein Eigenzustand des kinematischen Teils des Hamilton-Operators) eine Überlagerung der verschiedenen Flavour-Zustände. Daraus folgt, dass sich der Flavour-Zustand eines Teilchens ändern kann, während es sich frei bewegt. Die Transformation von der Flavour-Basis zur Massen-Basis erfolgt bei Quarks durch die Cabibbo-Kobayashi-Maskawa-Matrix (CKM-Matrix). Für Leptonen existiert analog die Maki-Nakagawa-Sakata-Matrix (MNS-Matrix).

Bei mindestens 3 Familien erlaubt die CKM-Matrix eine Verletzung der CP-Invarianz.

Erhaltungsgrößen[Bearbeiten]

Absolut erhalten bleiben z. B.:

  • die elektrische Ladung Q
  • die schwache Hyperladung Yw bzw. die dritte Komponente des schwachen Isospins T3 = Q − Yw/2
  • die Differenz von Baryonenzahl und Leptonenzahl: B − L bzw. X = 5(B−L) − 2Yw.

Unter der starken Wechselwirkung bleiben alle Flavour-Quantenzahlen erhalten.

Neuere Theorien (Vereinigungstheorien von starker und schwacher Wechselwirkung) sagen eine Nichterhaltung der Baryonenzahl bzw. der Leptonenzahl allein voraus.

Einzelnachweise[Bearbeiten]

  1. B. J. Bjørken und S. L. Glashow: Elementary particles and SU(4). In: Physics Letters, 11, 1964, S. 255–57.

Siehe auch[Bearbeiten]