Gehirn

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel behandelt den im Kopf gelegenen Teil des Zentralnervensystems der Wirbeltiere. Weitere Bedeutungen sind unter Hirn aufgeführt.

Als Gehirn oder Hirn (ahd. hirni, hirne)[1]lateinisch cerebrum, griechisch ἐγκέφαλος enképhalos – wird bei Wirbeltieren der im Kopf gelegene Teil des zentralen Nervensystems bezeichnet. Das Hirn, anatomisch Encephalon genannt (von griechisch ἐν en ‚in‘ und κεφαλή kephalē ‚Kopf‘), liegt geschützt in der Schädelhöhle, wird umhüllt von Hirnhäuten und besteht hauptsächlich aus Nervengewebe. In Höhe des Foramen magnum geht es in das Rückenmark über, beide zusammen bilden das Zentralnervensystem (ZNS).

Präpariertes menschliches Gehirn
Rotationsanimiertes Modell eines menschlichen Gehirns (ohne rechtes Großhirn; Frontallappen rot markiert)

Das Gehirn der Wirbeltiere[Bearbeiten | Quelltext bearbeiten]

Funktion[Bearbeiten | Quelltext bearbeiten]

Das Wirbeltier-Gehirn verarbeitet hochdifferenziert Sinneswahrnehmungen und koordiniert komplexe Verhaltens­weisen. Es ist somit der Hauptintegrationsort für alle komplexen Informationen, die der Organismus verarbeitet.

Nicht jede Information gelangt bis zur Hirnrinde und führt zu Bewusstsein. Peripher liegende Nervengeflechte (Plexus) und vor allem Zentren im Hirnstamm verarbeiten die meisten der von Rezeptoren ankommenden Erregungen unbewusst. Reflexbögen übernehmen Aufgaben, die mit höchster Geschwindigkeit und ohne bewusste Verarbeitung und verzögernde Einflussnahme erledigt werden. Beim Menschen gibt es ebenfalls ein solches autonomes Nervensystem. Es koordiniert vegetative Funktionen wie Atmung, Herzkreislauf, Nahrungsaufnahme, -verdauung und -abgabe, Flüssigkeitsaufnahme und -ausscheidung sowie Fortpflanzung.

Im Gehirn interagieren stark vernetzte Neuronen (siehe Neuronales Netz und Erregungsleitung). Seine Tätigkeit wird in vivo durch die Messung der Gehirnströme per Elektroenzephalografie (EEG) und der vom Gehirn produzierten elektrischen Felder per Magnetoenzephalographie (MEG) untersucht.

Evolution[Bearbeiten | Quelltext bearbeiten]

Im Lauf der Evolution hat das Gehirn „höherer“ Tiere ein beachtliches Maß an Differenzierung und innerer Organisation erreicht (Zerebration). Das spiegelt sich in der psychischen und körperlichen Entwicklung des Einzelnen wider (siehe Embryologie). Die Struktur und – in geringerem Maß – das Volumen des Gehirns korrelieren mit Lernfähigkeit und Intelligenz. Erst in der Hierarchie des Nervensystems ist die Leistung des Gehirns verständlich.

Neben den Wirbeltieren besitzen Tintenfische hochkomplexe Gehirne, die sie zu gezielten Tätigkeiten befähigen. Im weiteren Sinne ist es die Zentralstelle des Nervensystems verschiedener wirbelloser Tiere, etwa Ringelwürmern oder Insekten. Je nach Gehirntyp handelt es sich um ein Cerebralganglion oder ein Oberschlundganglion. Zwei Gruppen wirbelloser Tiere haben besonders komplizierte Gehirne: Gliederfüßer (Insekten, Krebstiere, und andere), und Kopffüßer (Kraken, Tintenfische, und ähnliche Weichtiere).[2] Die Gehirne der Gliederfüßer und der Kopffüßer gehen aus zwei nebeneinander liegenden Nervensträngen hervor. Kopffüßer wie der Krake und der Tintenfisch haben die größten Gehirne aller wirbellosen Tiere.[3]

Das hochentwickelte Gehirn von Wirbeltieren unterscheidet sich deutlich vom Strickleiternervensystem der Gliederfüßer. Bei Insekten zieht sich der Verdauungstrakt direkt durch das vordere Nervensystem (zwischen Tritocerebrum und subösophagealem Ganglion), sodass die Bauchganglien ventral (bauchseitig) des Darmrohrs liegen, während bei Wirbeltieren das Rückenmark dorsal (rückenseitig) des Darms liegt.

Gliederung[Bearbeiten | Quelltext bearbeiten]

Die Einteilung des Gehirns ist je nach Lehrbuch und Institution verschieden. Diese Gliederung bezieht sich auf das ausgewachsene menschliche Gehirn. Je nach Untersuchungsgegenstand kann es zweckmäßig sein, einzelne Bereiche in ihrer Entwicklung zu verfolgen (etwa Neuralplatte zum Neuralrohr zum Prosencephalon, Mesencephalon und Rhombencephalon bei vier Wochen alten Embryos). Der Entwicklungsgrad des Gehirns ist die Zerebralisation.

  • Typisch ist eine Gliederung in fünf große Hauptabschnitte: Telencephalon, Diencephalon, Mesencephalon, Metencephalon und Myelencephalon.
Gehirn Prosencephalon
Vorderhirn
Telencephalon
Endhirn

Rhinencephalon, Amygdala, Hippocampus, Neocortex, Basalganglien, Seitenventrikel

Diencephalon
Zwischenhirn

Epithalamus, Thalamus, Hypothalamus, Subthalamus, Hypophyse, Zirbeldrüse, Dritter Ventrikel

Mesencephalon Mesencephalon
Mittelhirn

Tectum, Tegmentum

Rhombencephalon
Rautenhirn
Metencephalon
Hinterhirn

Pons, Cerebellum (Kleinhirn)

Myelencephalon
Nachhirn
Medulla oblongata

Die hier dargestellte Grobgliederung folgt dem Werk von Pinel.[4]

Das menschliche Gehirn[Bearbeiten | Quelltext bearbeiten]

MRT-Bild eines menschlichen Gehirns. Schnitt sagittal, die Nase ist links. Hier klicken für eine animierte Abfolge von Schnitten.

Grobe Unterteilung des menschlichen Gehirns:

Seitenansicht

Sicht auf die Schnittfläche des halbierten Gehirns (Schnittflächen ocker)

Sicht von unten

Die Länge aller Nervenbahnen des Gehirns eines erwachsenen Menschen beträgt etwa 5,8 Millionen Kilometer, das entspricht dem 145-fachen Erdumfang.

Das Volumen eines menschlichen Gehirns liegt bei einem Mann bei durchschnittlich etwa 1,27 Litern, bei einer Frau bei etwa 1,13 Litern.[5]

Aufbau[Bearbeiten | Quelltext bearbeiten]

Es bestehen vereinfacht vier Hauptbereiche.

Großhirn
Das Großhirn ist in der Mitte durch einen Einschnitt in zwei Halbkugeln (Hemisphären) geteilt. Zwischen diesen gibt es eine breite Verbindung aus einem dicken Nervenstrang, Corpus callosum oder Balken genannt, und weitere kleinere Verbindungen.
Seine 2–4 mm dicke Oberflächenschicht (Großhirnrinde, Cortex) ist stark gefaltet und fast einen Viertel Quadratmeter groß. Sie enthält etwa 16 Milliarden Nervenzellen, was etwa einem Fünftel der Nervenzellen des gesamten Gehirns entspricht.[6] Unter der Rinde verlaufen Nervenfasern. Ansammlungen von Neuronen sind rosa, die myelinhaltigen Fasern weiß. Im toten Gehirn färben sich die Neuronen grau. Deshalb heißen sie, obwohl sie während des Lebens rosa sind, graue Substanz.
Auf der Rinde lassen sich die sogenannten Rindenfelder lokalisieren, unterschieden zwischen primären Feldern und Assoziationsfeldern. Die primären Felder verarbeiten nur Informationen einer bestimmten Qualität, solche über Wahrnehmungen (Empfindung, zum Beispiel Sehen, Riechen, Berührung) oder über einfache Bewegungen. Die Assoziationsfelder stimmen verschiedene Funktionen aufeinander ab. Die Zuweisung eines Rindenfeldes zu einer bestimmten Funktion wird immer wieder definiert und relativiert. Erst das korrekte Zusammenspiel verschiedener Felder ermöglicht eine Funktion.
Zu den primären Feldern zählen zum Beispiel der visuelle Cortex, der am hinteren Pol des Gehirns liegt und auf dem die Projektionen der Sehbahn münden, und der auditorische Cortex, der der Verarbeitung akustischer Reize dient und seitlich im Schläfenlappen liegt.
Assoziative Felder finden sich unter anderem im vorderen Teil des Gehirns. Ihre Aufgaben sind zum Beispiel Gedächtnis und höhere Denkvorgänge.
Die Rindenfelder und ihre Funktionen können voneinander abgegrenzt werden, indem nach deren Ausfall (zum Beispiel durch Schlaganfall) die Tätigkeit des Patienten oder durch elektrische Stimulation, mikroskopische und andere Techniken das gesunde Gehirn untersucht wird. Neben der Großhirnrinde sind meist andere Hirnregionen an einer bestimmten Funktion beteiligt.
Zwischenhirn
Zum Zwischenhirn gehören vier Teile:
  1. Thalamus (oberer Teil)
  2. Hypothalamus, der mit der Hypophyse (Hirnanhangdrüse) verbunden ist
  3. Subthalamus
  4. Epithalamus
Der Thalamus ist der Vermittler sensorischer und motorischer Signale zum und vom Großhirn. Bei ihm laufen alle Informationen der Sinnesorgane zusammen und werden weiter vermittelt. Er besteht hauptsächlich aus grauer Substanz. Der Hypothalamus steuert zahlreiche körperliche und psychische Lebensvorgänge und wird selbst teils neuronal über das vegetative Nervensystem, teils hormonell über den Blutweg gesteuert. Hypothalamus und Hypophyse (wichtige Hormondrüse des Körpers, die über den Hypophysenstiel mit dem Hypothalamus verbunden ist) sind das zentrale Bindeglied zwischen dem Hormon- und dem Nervensystem. Das Zwischenhirn ist beteiligt an der Schlaf-Wach-Steuerung (siehe aufsteigendes retikuläres Aktivierungssystem, Schmerz­empfindung, Temperaturregulation).
Kleinhirn
Am Kleinhirn lassen sich ebenfalls zwei Hemisphären unterscheiden. Zusätzlich werden weitere Teile abgegrenzt. Es ist zum Beispiel für Gleichgewicht und Bewegungen und deren Koordination verantwortlich. Bei Tieren ist es – im Vergleich zum Großhirn – oft stärker entwickelt als beim Menschen, insbesondere bei Arten mit Flugvermögen oder bei schnellen Räubern.
Außerdem wird dem Kleinhirn eine Funktion beim unbewussten Lernen zugeschrieben. Neuere Forschungen (2005) lassen darauf schließen, dass es am Spracherwerb und dem sozialen Lernen beteiligt ist.
Hirnstamm
Der Hirnstamm ist der stammesgeschichtlich älteste Teil des Gehirns. Er bildet den untersten Gehirnabschnitt und besteht aus auf- und absteigenden Nervenfasern (Weiße Substanz) und Ansammlungen von Neuronen beziehungsweise von Somata (Graue Substanz), morphologisch aus dem Mittelhirn, der Brücke (Pons) und dem Nachhirn (auch verlängertes Mark = Medulla oblongata genannt, da zwischen Rückenmark und Brücke gelegen). Der Hirnstamm verschaltet und verarbeitet eingehende Sinneseindrücke und ausgehende motorische Informationen und ist zudem für elementare und reflexartige Steuermechanismen zuständig.
Im Nachhirn kreuzen sich die Nervenbahnen der beiden Körperhälften. Außerdem werden hier viele automatisch ablaufende Vorgänge wie Herzschlag, Atmung oder Stoffwechsel gesteuert. Ebenso befinden sich hier wichtige Reflexzentren, die zum Beispiel Lidschluss-, Schluck-, Husten- und andere Reflexe auslösen. Das untere Ende des Nachhirns schließt an das Rückenmark an.

Gehirne von Männern und Frauen[Bearbeiten | Quelltext bearbeiten]

Magnetresonanztomographie-Aufnahmen eines menschlichen Gehirns

Die Gehirne von Männern und Frauen unterscheiden sich in der Größe und im Aufbau. Durchschnittlich wiegt das Gehirn eines erwachsenen Mannes je nach Ethnie etwa 1400 g. Bei gleicher Statur von Mann und Frau ist das Gehirn bei Männern durchschnittlich 100 g schwerer.[7] Nicht nur die Gesamtgehirngröße unterscheidet sich zwischen den Geschlechtern, sondern die relative Größe verschiedener Gehirnareale.[8] Am besten erforscht sind hierbei der Hippocampus und die Amygdala.

Der Hippocampus ist für das Lernen und die Erinnerungen zuständig und hat bei Männern und Frauen unterschiedliche anatomische Strukturen und neurochemische Zusammensetzungen. Im Verhältnis zum Gesamthirn ist der Hippocampus bei der Frau größer. Beim Mann ist jedoch die CA1-Region größer und die Anzahl der Pyramidenzellen erhöht.[8] Des Weiteren bestehen eine unterschiedliche Rezeptor-Affinität für verschiedene Neurotransmitter und Unterschiede in der Langzeitpotenzierung.[8]
Die Amygdala spielt eine Rolle beim Reproduktionsverhalten und stellt das Gedächtnis für emotionale Ereignisse dar.[8] Studien zeigten, dass es eine geschlechtsspezifische hemisphärische Lateralisation der Amygdalafunktionen in Beziehung auf die Erinnerung an emotionale Momente, bei der Reaktion auf glückliche Gesichter, bei der Verschaltung der Amygdala mit dem restlichen Gehirn sowie bei bestimmten Krankheiten, wie etwa der Depression, gibt.[8] Bei Frauen ist die linke Gehirnhälfte involviert, bei Männern die rechte.[8]

Zur Entstehung dieses Dimorphismus gibt es verschiedene Theorien. Zum einen kommt alternatives Spleißen von mRNA in Frage. Zum Beispiel das Spleißen von Kanalproteinen, sodass deren Durchlässigkeit für Ionen verändert ist.[8] Zum anderen sind epigenetische Kontrollmechanismen relevant. Hierzu zählen unter anderem die genomische Prägung und die Histonmodifikation.[8] Zudem wird immer wieder die Frage gestellt, inwiefern die Umwelt Einfluss auf den Dimorphismus hat.

Ein anderer Erklärungsansatz ist folgender: Geschlechtshormone, wie Testosteron und die Östrogene, wirken nicht nur auf die Keimdrüsen, sondern in vielfältiger Weise auf das gesamte Nervensystem: auf Nervenzellen, Synapsen, Genexpression. Dies gilt für die Zeit der Embryonalentwicklung und während der Kindheit, der Pubertät und im Erwachsenenalter.[9] So bewirken die Geschlechtshormone eine typische männliche beziehungsweise weibliche Entwicklung des Nervensystems. Dies wird zum Beispiel in der Regio praeoptica im Hypothalamus sichtbar, die bei jungen Männern im Vergleich zu Frauen vergrößert ist.

Ein entscheidender Faktor sind vermutlich die Barr-Körperchen, da viele X-chromosomale Gene in die neuronalen Prozesse der Gehirnentwicklung involviert sind. Die Barr-Körperchen entstehen durch zufällige Inaktivierung eines X-Chromosoms bei der Frau. Dies hat zur Folge, dass das weibliche Gewebe und die Organe, inklusive des Gehirns, ein Mosaik darstellen, da in jeder Zelle ein anderes Gen des polymorphen X-Gens exprimiert wird.[10] Daher wird angenommen, dass die unterschiedlichen Geschlechtschromosomen der wahrscheinlichste Grund für den Dimorphismus sind. Diese können auf zwei Arten die Entwicklung beeinflussen. Zum einen können die Genprodukte der Chromosomen direkt in den Zellen wirken, in denen sie exprimiert werden. Zum anderen bedingen die Gonosomen die Entwicklung der Gonaden, die die Geschlechtshormone bilden.

Im Rahmen einer bildgebenden Studie zur Geschlechtsidentität zeigten sich markante Unterschiede zwischen männlichen, weiblichen und transsexuellen Studienteilnehmern im Hinblick auf die Mikrostruktur der weißen Hirnsubstanz. Die Faserverläufe und damit die Struktur der Nervenverbindungen wiesen deutliche Unterschiede auf, bei denen die Ergebnisse der Transgenderpersonen zwischen denen von Männern und Frauen lagen. Dieselbe Studie lieferte Hinweise auf einen engen Zusammenhang zwischen den Faserverläufen und den Blutwerten von Geschlechtshormonen. Diese Befunde stützen die Annahme eines Einflusses der Geschlechtshormone auf die embryonale und frühkindliche Hirnentwicklung.[11]

Leistung des Gehirns[Bearbeiten | Quelltext bearbeiten]

Das Gehirn ist ein sehr aktives Organ mit einem besonders hohen Energiebedarf. Es macht beim Erwachsenen etwa 2 % der Körpermasse aus, verbraucht mit etwa 20 Watt etwa 20 % des Grundumsatzes,[12] beim Neugeborenen 50 %. Energie gewinnt es aus der aeroben Verbrennung von Glucose, aus Laktat[13] und Ketonkörpern. Glucose kann nicht vollständig durch die anderen Energieträger ersetzt werden.[14] Säuglingsgehirne können unmittelbar nach der Geburt zu einem ganz erheblichen Anteil Ketonkörper zur Energiegewinnung nutzen.[14] Einige Zeit nach Umstellung der Ernährung des Kleinkindes auf kohlenhydratreiche Nahrung wird die dafür erforderliche Enzymproduktion wieder reduziert oder ganz abgebaut und die Fähigkeit zur Ketolyse (zur Nutzung von Ketonkörpern für die Energiegewinnung) geht wieder verloren.[14] Das Verhalten des Blutglucosespiegels im Hungerstoffwechsel lässt vermuten, dass ein vollständig ketolysefähiges Gehirn priorisiert Ketonkörper (vorrangig vor der Glucose, selbst bei ausreichender Glucosezufuhr über das Blut) verarbeitet.[15]

90 % der Leistung benötigt die Natriumpumpe, größtenteils im Zusammenhang mit Aktionspotentialen. Da es nur geringe, arealabhängige Speicherkapazitäten für Energie besitzt, führt ein Ausfall der Sauerstoff- oder Glucoseversorgung bereits nach zehn Sekunden zu einem Funktionsausfall (Synkope) und nach wenigen Minuten zu spezifischen Hirnschäden. Die geringen, auf den ersten Blick evolutionär unverständlichen Reservoirs werden manchmal durch Platzmangel erklärt. Gemäß einer anderen – evolutionären – Erklärung wich die Ernährungsweise der Menschen in der Altsteinzeit sehr stark von der heutigen Zivilisationskost ab, wodurch die Ketolysefähigkeit der damaligen Gehirne zu jedem Zeitpunkt auf natürliche Weise erhalten blieb. Dies begründet sich im Einzelnen: Der menschliche Organismus speichert zwar zu viel aus Lebensmitteln aufgenommene Energie letztlich in den Körperfettdepots (bei einer 70 kg schweren, gesunden, schlanken Person liegen 85 % der verwertbaren Körperenergien als Körperfett vor, 14,5 % als Proteine und nur 0,5 % als Kohlenhydrate[16]), kann aus Fett kaum noch Glukose herstellen (anteilsmäßig nur noch 6 % aus dem Glycerin der Triglyceride, in deren Form Fett im Organismus gespeichert wird).[17] Einige Wissenschaftler nehmen an, dass die fettreichere Ernährung in der Altsteinzeit zum Wachstum des Gehirns des Menschen beitrug.[18]

Mit der natürlichen Fähigkeit von menschlichen Gehirnen zur Ketolyse begründet sich die Wirksamkeit der ketogenen Diät bei Epilepsie, GLUT1-Defizit-Syndrom und anderen zerebralen Erkrankungen und der Hungerstoffwechsel.[19]

Seit 1994 ist bekannt, dass die Nervenzellen über die Astrozyten bei Bedarf eine genau bemessene Energiemenge aus dem Blut erhalten, es ist der aktive Vorgang „Energy on Demand“.[20] Die bedarfsabhängige Regulierung der Blutversorgung von Hirnarealen wird als Neurovaskuläre Kopplung bezeichnet. 1998 bis 2004 entwickelte Achim Peters die Selfish-Brain-Theorie, wonach das menschliche Gehirn bei der Regelung der Energieversorgung im Organismus vorrangig den eigenen, vergleichsweise hohen Bedarf deckt. Gemäß einer anderen Erklärung trifft dies jedoch nur für Gehirne zu, die aufgrund langjähriger Anwendung kohlenhydrat- und kalorienreicher Ernährungsweisen keine Ketonkörper mehr zur Energiegewinnung nutzen können. Diese sind also nicht mehr ketolysefähig.[21] Solche Gehirne sind nicht mehr auf natürliche Weise am Fettstoffwechsel angeschlossen und müssen folglich ihren gesamten Energiebedarf über den viel leistungsschwächeren Kohlenhydratstoffwechsel mit seinen äußerst geringen Energiereserven[16] decken.

Vergleich mit Computern[Bearbeiten | Quelltext bearbeiten]

Oft werden Vergleiche zwischen der Leistungsfähigkeit eines Computers und der des menschlichen Gehirns angestellt. Seit das Gehirn als Sitz kognitiver Leistung erkannt wurde, wurde es in der Literatur immer mit dem komplexesten verfügbaren technischen Apparat verglichen (Dampfmaschine, Telegraph). So wurde versucht aus der Funktionsweise von Computern auf die des Gehirns zu schließen. Mittlerweile besteht das Bemühen in der Computational Neuroscience und der bionischen Neuroinformatik, die Funktionsweise des Gehirns teilweise auf Computern nachzubilden oder dadurch auf neue Ideen zur „intelligenten“ Informationsverarbeitung zu kommen (siehe Blue Brain). Es ergibt sich die Perspektive, dass das Gehirn als Struktur für Denk- und Wissensproduktion eine Architektur liefert, die sich zur Nachahmung empfiehlt. Künstliche neuronale Netzwerke haben sich bereits bei der Organisation künstlicher Intelligenzprozesse etabliert.

Rechenleistung und Leistungsaufnahme[Bearbeiten | Quelltext bearbeiten]

Bei Vergleichen mit modernen Computern zeigt sich die Leistungsfähigkeit des menschlichen Gehirns. Während das Gehirn etwa 1013 analoge Rechenoperationen pro Sekunde schafft und dabei etwa 15 bis 20 Watt Leistung benötigt, schafft der Supercomputer BlueGene/L von IBM bis zu 3,6·1014 Gleitkommaoperationen pro Sekunde mit doppelter Genauigkeit, wozu jedoch etwa 1,2 Megawatt benötigt werden. Intels erster Teraflop-Chip Prototyp „Terascale“ mit 80 Prozessorkernen schafft hingegen etwa 1012 Gleitkommaoperationen mit einfacher Genauigkeit bei 85 Watt (oder 2·1012 Gleitkommaoperationen bei 190 Watt und 6,26 GHz), was immer noch dem 50- bis 5000-fachen Energiebedarf entspricht. Zwar erreichen moderne 3D-Grafikkarten vergleichbare Werte bei geringerem elektrischen Leistungsbedarf, Grafikchips sind jedoch stärker auf bestimmte Rechenvorgänge spezialisiert.

Es ist allerdings zu beachten, dass die hohe Rechenleistung des Gehirns vor allem durch seine vielen parallelen Verbindungen (Konnektivität) und nicht durch eine hohe Geschwindigkeit bei den einzelnen Rechenvorgängen (Taktfrequenz) erzielt wird. Künstliche Neuronen arbeiten 105-mal so schnell wie Neuronen des menschlichen Gehirns.

Speicher[Bearbeiten | Quelltext bearbeiten]

Zusätzlich zur Parallelisierung stellt ein neuronales Netzwerk gleichzeitig eine Speicher- und eine Verarbeitungslogik dar, während diese bei Computern, die auf der Von-Neumann-Architektur basieren, getrennt sind. Dies bewirkt, dass in einem einfachen neuronalen Netzwerk mit jedem Taktzyklus der gesamte Speicher aktualisiert wird, während ein Computer den Inhalt des Speichers schrittweise aktualisieren muss.

Effizienz[Bearbeiten | Quelltext bearbeiten]

Rechenvorgänge, die auf einem Computer effizient ablaufen, sind meistens nicht effizient in einem neuronalen Netzwerk abbildbar und umgekehrt. Aufgrund der Ineffizienz bestehender Computerarchitekturen für bestimmte Aufgaben, wie beim Sehen, werden neuronale Netzwerke, wie dasjenige des Neocortex, durch Neuromorphing nachgebildet.[22][23]

Im März 2009 bildeten künstliche neuronale Netzwerke im Rahmen des FACETS-Projekts 200.000 künstliche Neuronen mit 50 Millionen künstlichen Synapsen auf einem einzelnen 8 Zoll (20,32 cm Diagonale) großen Computerchip ab. Im Juli 2014 stellte IBM TrueNorth vor, welcher 1 Million Neuronen und 256 Millionen Synapsen auf einem Chip mit einer TDP von 70 mW, oder 16 Millionen Neuronen mit 4 Milliarden Synapsen in einem einzelnen Rack integriert.[24]

Das Modell des Hypothesengenies[Bearbeiten | Quelltext bearbeiten]

Die Ansicht, das Gehirn als ein „Hypothesengenie“ oder eine „Vorhersagemaschine“ zu sehen, hatte bereits Hermann von Helmholtz, da andere Ansätze, das Gehirn künstlich nachzuempfinden, auf bisher unlösbare Probleme führten und scheiterten. Der Ansatz geht davon aus, dass das Gehirn Hypothesen bildet und alle Eindrücke und Wahrnehmungen in die gespeicherten Muster einbaut und vergleicht. Wenn das Wahrgenommene nicht mehr auf die einzelne Hypothese passt, wird diese verworfen und nach Bedarf eine neue erstellt. Dies zeige sich klassisch bei der Interpretation von Kippfiguren.[25]

Vernetzung der Nervenzellen[Bearbeiten | Quelltext bearbeiten]

Während das Gehirn einer Ratte etwa 200 Millionen Neuronen enthält,[26] besitzt das eines Menschen neueren Untersuchungen zufolge etwa 86 Milliarden Nervenzellen,[6] wobei in beiden Fällen etwa ein Fünftel in der Großhirnrinde (Cortex cerebri) liegen, und über zwei Drittel im Kleinhirn (Cerebellum). Miteinander verbunden sind Neuronen über Synapsen, im menschlichen Hirn geschätzt rund 100 Billionen, sodass durchschnittlich eine Nervenzelle mit 1000 anderen verbunden wäre und von jedem anderen Neuron aus in höchstens vier Schritten erreicht werden könnte. Doch gibt es lokal deutliche Abweichungen von diesem Mittelwert,[27] denn nicht die Dichte, sondern das Muster von neuronalen Verknüpfungen ist für neurale Funktionen entscheidend. Ein häufiges Organisationsprinzip des Gehirns ist die Abbildung von Nachbarschaftsverhältnissen: was nebeneinander im Körper liegt, wird in Hirnarealen oft nebeneinander repräsentiert (Somatotopie).

Obwohl ausschließlich die Nervenzellen Erregungen als neuronale Impulse leiten und an Synapsen über Neurotransmitter als Signal weitergeben, spielen die sie umgebenden Gliazellen dabei keine unwesentliche Rolle. Die insgesamt etwa ebenso häufigen, meist kleineren Gliazellen ermöglichen Nervenzellen eine rasche Erregungsleitung und störungsfreie Signalübertragung, nehmen ausgeschüttete Botenstoffe auf, sorgen für die Bereitstellung von Nährstoffen und sind an den physiologischen Barrieren der Blut-Hirn- und der Blut-Liquor-Schranke beteiligt. Im sich entwickelnden Gehirn, und in sich weiterentwickelnden Hirnregionen, nehmen sie Einfluss auf die Ausbildung, Stabilität und Gewichtung der synaptischen Verbindungen zwischen Neuronen; bei Schädigungen peripherer Nerven bilden sie eine zur Wiederherstellung nötige Leitstruktur.[28]

Die Konnektom-Forschung hat das Ziel, alle Verbindungen zwischen den Neuronen zu kartieren.

Die zwölf Hauptnervenpaare des Gehirns[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Hirnnerv
  1. Nervus olfactorius – ermöglicht das Riechen
  2. Nervus opticus – leitet optische Impulse
  3. Nervus oculomotorius – versorgt vier von sechs Muskeln, die das Auge bewegen, und andere Funktionen
  4. Nervus trochlearis – versorgt den oberen schrägen Augenmuskel
  5. Nervus trigeminus – leitet unter anderem Informationen über Berührungen aus dem Gesichtsbereich, ermöglicht das Kauen
  6. Nervus abducens – versorgt den seitlichen Augenmuskel
  7. Nervus facialis – ermöglicht unter anderem mimische Bewegungen und Geschmackswahrnehmung
  8. Nervus vestibulocochlearis (N. statoacusticus) – leitet Informationen aus dem Hör- und dem Gleichgewichtsorgan
  9. Nervus glossopharyngeus – unter anderem leitet er Informationen (wie den Geschmack) aus dem Schlundbereich und ermöglicht Bewegungen in diesem Bereich
  10. Nervus vagus – im Wesentlichen für die Wahrnehmung, Bewegung und vegetative Funktionen – inklusive Drüsentätigkeit und Hormonausschüttung
  11. Nervus accessorius – ermöglicht Bewegungen durch zwei große Muskeln des Halses und Kopfes
  12. Nervus hypoglossus – ermöglicht Bewegungen der Zunge

Forschungsprojekte[Bearbeiten | Quelltext bearbeiten]

US-Präsident Barack Obama hat zu Beginn seiner zweiten Amtszeit Planungen für ein sehr großes Forschungsprojekt namens Brain Activity Map Project bekanntgegeben: Das menschliche Gehirn soll komplett kartiert werden. Dies wäre das größte wissenschaftliche Vorhaben seit vielen Jahren (das letzte war das Human Genome Project). Experten hoffen auf Therapien gegen Alzheimer-Krankheit und Parkinson sowie auf Erkenntnisse über menschliches Denken und Fühlen.[29] Erste Ansätze wurden im Juli 2012 in der Fachzeitschrift Neuron veröffentlicht.[30]

Das US-Projekt ist nicht mit dem Human Brain Project zu verwechseln, das im Februar 2013 durch die EU gestartet wurde. Eine Jury hatte die Erforschung des Gehirns ebenfalls als ein Schlüsselprojekt der Zukunft ausgewählt; gefördert wird es mit einer Milliarde Euro.[29][31]

Sonstiges[Bearbeiten | Quelltext bearbeiten]

2008 wurden auf dem Gelände der University of York (England) die Überreste eines 2500 Jahre alten menschlichen Schädels gefunden, dessen Gehirn überwiegend erhalten ist. Forscher vermuten, dass das Gehirn des wahrscheinlich 26–45 Jahre alten Mannes unter anderem deswegen bis heute so gut erhalten blieb, weil der Kopf – ein Körper wurde nicht gefunden – seinerzeit unmittelbar nach dem Tod in nasser Lehmerde begraben wurde. Eine vollständige Klärung, warum das Gehirn nicht schon längst zerfallen ist, konnte bislang nicht gefunden werden.[32]

Hirn als Rohstoff findet Verwendung bei der Fettgerbung.

Neurolinguistik untersucht wie die Sprache durch das Gehirn dargestellt, aufgearbeitet und erlernt wird.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

 Portal: Geist und Gehirn – Übersicht zu Wikipedia-Inhalten zum Thema Geist und Gehirn

Literatur[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Gehirn – Album mit Bildern, Videos und Audiodateien
 Wikibooks: Neuroanatomie – Lern- und Lehrmaterialien
 Wiktionary: Gehirn – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen
  Wikiquote: Gehirn – Zitate
  • Deutsch
    • dasGehirn.info Informationsportal rund um das Gehirn
    • Brain Explorer – Aufbau, Funktionen, Krankheiten des Gehirns, mit vielen Abbildungen (4 Sprachen)
    • Braincast Podcast über das Gehirn

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. hirn n.. In: Jacob Grimm, Wilhelm Grimm: Deutsches Wörterbuch. Hirzel, Leipzig 1854–1961 (woerterbuchnetz.de, Universität Trier).
  2. AB Butler: Chordate Evolution and the Origin of Craniates: An Old Brain in a New Head. In: Anatomical Record. 261, Nr. 3, 2000, S. 111–125. doi:10.1002/1097-0185(20000615)261:3<111::AID-AR6>3.0.CO;2-F. PMID 10867629.
  3. TH Bulloch, W Kutch: Are the main grades of brains different principally in numbers of connections or also in quality?. In: Breidbach O (Hrsg.): The nervous systems of invertebrates: an evolutionary and comparative approach.. Birkhäuser, 1995, ISBN 978-3-7643-5076-5.
  4. John P. J. Pinel, Paul Pauli: Biopsychologie. 6., aktualis. Aufl. Pearson Studium, München u. a. 2007, ISBN 978-3-8273-7217-8, S. 95.
  5. John S. Allen, Hanna Damasio, Thomas J. Grabowski: Normal neuroanatomical variation in the human brain: an MRI-volumetric study. In: American Journal of Physical Anthropology. Band 118, Nr. 4, S. 341–358, doi:10.1002/ajpa.10092, PMID 12124914.
  6. a b Frederico A. C. Azevedo, Ludmila R. B. Carvalho, Lea T. Grinberg, José Marcelo Farfel, Renata E. L. Ferretti: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. In: The Journal of Comparative Neurology. Band 513, Nr. 5, ISSN 1096-9861, S. 532–541, doi:10.1002/cne.21974, PMID 19226510 (suzanaherculanohouzel.com [abgerufen am 11. Januar 2016]).
  7. J. Philippe Rushton: Corrections to a paper on race and sex differences in brain size and intelligence. (PDF) charlesdarwinresearch.org, Department of Psychology, University of Western Ontario, London, Ontario N6A 5C2, Canada 5 September 1992
  8. a b c d e f g h Larry Cahil: Why sex matters for neuroscience. In: Nature Reviews Neuroscience. 2006, 7, S. 477–484.
  9. Elena Jazin, Larry Cahill: Sex differences in molecular neuroscience: from fruit flies to humans. In: Nature Reviews Neuroscience. 2010, 11, S. 9–17.
  10. Arthur P. Arnold: Sex chromosomes and brain gender. In: Nature Reviews Neuroscience. 2004, 5, S. 701–708.
  11. Kranz GS et al.: White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. J Neurosci. 2014 Nov 12;34(46):15466-75. doi:10.1523/JNEUROSCI.2488-14.2014. PMID 25392513
  12. Herbert Lochs: Hungerstoffwechsel. (PDF; 1,5 MB) 2003, S. 23
  13. Avital Schurr: Lactate: the ultimate cerebral oxidative energy substrate? Journal of Cerebral Blood Flow and Metabolism. 2006, 26, S. 142–152
  14. a b c Georg Löffler, Petro E. Petrides (Hrsg.): Biochemie und Pathobiochemie. 7. Auflage. Springer Medizin-Verlag, Heidelberg 2003, S. 1054
  15. Herbert Lochs: Hungerstoffwechsel. (PDF; 1,5 MB) 2003, S. 19
  16. a b Herbert Lochs: Hungerstoffwechsel. (PDF; 1,5 MB) 2003, S. 5
  17. Philip A. Wood: How Fat Works. Harvard University Press, Cambridge MA 2006
  18. Leslie C. Aiello, Peter Wheeler: The Expensive-Tissue Hypothesis. The Brain and the Digestive System in Human and Primate Evolution. In: Current Anthropology, Band 36, Nr. 2, 1995, S. 199–221
  19. Herbert Lochs: Hungerstoffwechsel. (PDF; 1,5 MB) 2003
  20. L. Pellerin, P. J. Magistretti: Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. In: Proc Natl Acad Sci USA, 91, 1994, S. 10625–10629.
  21. Peter Mersch: Wie Übergewicht entsteht … und wie man es wieder los wird. CreateSpace, North Charleston SC 2012
  22. Andrew Nere, Mikko Lipasti: Cortical architectures on a GPGPU. GPGPU, 2010, 12–18, doi:10.1145/1735688.1735693.
  23. Gehirnchip macht bei IBM Fortschritte. auf heise.de, 20. August 2011.
  24. Dharmendra S. Modha: Introducing a Brain-inspired Computer: TrueNorth's neurons to revolutionize system architecture. IBM Research, abgerufen am 7. August 2014 (englisch).
  25. Martin Hubert: HIRNFORSCHUNG – Das Hypothesengenie – Das Gehirn als Vorhersagemaschine Deutschlandradio, „Wissenschaft im Brennpunkt“ (Audio) vom 19. Januar 2014
  26. S. Herculano-Houzel, R. Lent: Isotropic fractionator: a simple, rapid method for the quantification of total cell and neuron numbers in the brain. In: J Neuroscience. Band 25, Nr. 10, März 2005, S. 2518–2521. doi:10.1523/JNEUROSCI.4526-04.2005. PMID 15758160.
  27. S. Song, P. J. Sjöström, M. Reigl, S. Nelson, D. B. Chklovskii: Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits. In: PLoS Biology. 3(3), S. e68. doi:10.1371/journal.pbio.0030068
  28. Jörg Auf dem Hövel: Briefträger, Botenstoffe und der unterschätzte Klebstoff. Telepolis, 2. Juni 2007.
  29. a b spiegel.de 18. Februar 2013: Milliardenschwerer Forschungsplan
  30. A. Paul Alivisatos, Miyoung Chun, George M. Church, Ralph J. Greenspan, Michael L. Roukes, Rafael Yuste: The Brain Activity Map Project and the Challenge of Functional Connectomics. In: Neuron. 74, 2012, S. 970–974, doi:10.1016/j.neuron.2012.06.006.
  31. spiegel.de 12. Mai 2011: Human Brain Project": Forscher basteln an der Hirnmaschine
  32. Ancient "Pickled" Brain Mystery Explained? auf: news.nationalgeographic.com aufgerufen am 25. Juni 2011