Greedy-Algorithmus

aus Wikipedia, der freien Enzyklopädie
Dies ist eine alte Version dieser Seite, zuletzt bearbeitet am 10. Juni 2015 um 15:03 Uhr durch Chricho (Diskussion | Beiträge) (dann deutlicher in zusammenhang setzen). Sie kann sich erheblich von der aktuellen Version unterscheiden.
Zur Navigation springen Zur Suche springen

Greedy-Algorithmen oder gierige Algorithmen bilden eine spezielle Klasse von Algorithmen, die in der Informatik auftreten. Sie zeichnen sich dadurch aus, dass sie schrittweise den Folgezustand auswählen, der zum Zeitpunkt der Wahl den größten Gewinn bzw. das beste Ergebnis (berechnet durch eine Bewertungsfunktion) verspricht (z. B. Gradientenverfahren).

Greedy-Algorithmen sind oft schnell, lösen viele Probleme aber nicht optimal.

Optimierungsprobleme auf Unabhängigkeitssystemen

Ein Greedy-Algorithmus findet für ein Optimierungsproblem auf Unabhängigkeitssystemen genau dann die optimale Lösung für alle Bewertungsfunktionen, wenn die zulässigen Lösungen die unabhängigen Mengen eines Matroids sind. Sonst führt der Algorithmus lediglich zu einem lokalen Optimum. Beispiele dafür sind das Rucksackproblem und das Problem des Handlungsreisenden. Bei diesen Problemen ist es wesentlich aufwändiger, die optimale Lösung zu finden, da die Probleme NP-vollständig sind.

Algorithmus für das Maximierungsproblem

Zu einem Matroid sei eine Gewichtsfunktion gegeben. Der folgende Algorithmus findet eine schwerste unabhängige Menge, bestimmt also ein , das maximiert:

 1  // Ordne alle Elemente in  nach absteigendem Gewicht
 2  
 3  
 4  ;
 5  
 6  for (k = 1; k <= n; k++) {
 7    if 
 8      
 9  }
10  
11  Ausgabe der Lösung 

Verallgemeinerbarkeit

Der Algorithmus löst auch Maximierungs- und Minimierungsprobleme zu beliebigen Gewichtsfunktionen : In einer Lösung für das Maximierungsproblem treten negative Gewichte nicht auf, Elemente mit negativem Gewicht können also vom Algorithmus ignoriert werden. Die Lösung des Problems, eine minimale unabhängige Menge zu finden, kann auf die Lösung des Maximierungsproblems zurückgeführt werden, indem man die Gewichte durch ihre additiven Inversen ersetzt.

Laufzeit

Ist L die Laufzeit der Prüfung einer Menge auf Unabhängigkeit, so ist die Laufzeit des Algorithmus durch gegeben. Im besten Fall wird sie also durch das Sortierverfahren dominiert. Wenn die Unabhängigkeitsprüfung dagegen NP-vollständig ist, ist der Algorithmus praktisch nutzlos.

Algorithmus für das Minimierungsproblem

Zu einem Matroid sei eine Gewichtsfunktion gegeben. Der folgende Algorithmus findet eine leichteste Basis, bestimmt also unter den kardinalitätsmaximalen eines, das minimiert:

  • Sortiere E, so dass mit
  • T := E
  • Für jedes i von 1 bis n:
Enthält eine Basis, so setze .
  • Gib T aus.

Vergleich zum Maximierungsproblem, Verallgemeinerbarkeit

Da positive Gewichte vergeben sind, ist das Problem, nach einer leichtesten Basis-Obermenge zu suchen, äquivalent. Dieses Problem ist dual zum Maximierungsproblem und kann analog auf beliebige Gewichtsfunktionen und das entsprechende Minimierungsproblem verallgemeinert werden.

Laufzeit

Ist L die Laufzeit der Prüfung, ob eine Teilmenge von E Obermenge einer Basis ist, so ist die Laufzeit des Algorithmus durch gegeben. Im besten Fall wird sie also durch das Sortierverfahren dominiert. Wenn die Basis-Obermengen-Prüfung dagegen NP-vollständig ist, ist der Algorithmus praktisch nutzlos.

Beispiele

Literatur