Grenzflächenspannung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Grenzflächenspannung bezeichnet Kräfte, die in der Grenze zwischen zwei verschiedenen Phasen auftreten, die miteinander in Kontakt stehen. Sie bilden eine gemeinsame Grenzfläche, die unter Grenzflächenspannung steht. Phasen können flüssig, fest oder gasförmig sein. Unter verschiedenen Phasen versteht man Phasen, die sich nicht vermischen, wie z. B. Wasser und Öl oder Glas und Wasser. Grenzflächenspannung zwischen Flüssigkeiten und Gasphasen bezeichnet man meist als Oberflächenspannung. Zur Grenzflächenspannung bei Festkörpern siehe unter Elastische Grenzflächenspannung.

Phänomene[Bearbeiten | Quelltext bearbeiten]

Die Grenzflächenspannung beschreibt die Gründe, warum …

  • fallendes Wasser oder Wasser auf Glasscheiben in Tropfen zerfällt (→ Tropfen);
  • die Oberfläche einer Flüssigkeit in einem Reagenzglas eine Wölbung zeigen kann (→ Meniskus);
  • Flüssigkeiten in einem Glasröhrchen ein Stück aufsteigen können, wenn ein Ende des Röhrchens senkrecht in die Flüssigkeit getaucht wird (→ Kapillarität);
  • einige Insekten über das Wasser laufen können (→ Wasserläufer);
  • von einer leichten, dünnen Regenjacke das Wasser abperlen kann (→ Benetzung).

Grenzflächenspannung ist „Grenzflächenenergie“ bzw. „Grenzflächenarbeit“[Bearbeiten | Quelltext bearbeiten]

Die Grenzflächenspannung ist eine mechanische Spannung in der Grenzfläche mit Kräften, die eine Verkleinerung der Grenzfläche bewirken können. Gleichzeitig ist sie eine Grenzflächenarbeit oder Grenzflächenenergie: Sie beschreibt die Energie, die umgesetzt werden muss, um die Grenzfläche um 1 m2 unter isothermen Bedingungen zu vergrößern.

Die Grenzflächenspannung bedeutet, dass Arbeit aufgewendet werden muss, um die Grenzfläche zu vergrößern, und dass Energie freigesetzt wird, wenn sich die Fläche verkleinert. Ein System wie Wasser/Luft strebt aus diesen energetischen Gründen eine möglichst kleine Grenzfläche an. Das Wasser bildet Tröpfchen und nimmt nicht „freiwillig“ die Form eines Tellers an.

Phase und Phasengrenze[Bearbeiten | Quelltext bearbeiten]

Abb.1: Richtungen zwischenmolekularer Kräfte in der Phase und an der Oberfläche.

Innerhalb einer Phase wirken die Kräfte in alle Raumrichtungen zwischen den Teilchen, die die Phase bilden (Kohäsion). Bei den Teilchen kann es sich um Moleküle, Metallatome oder die Ionen eines Salzes handeln. Im Inneren der Phase heben sich die Kräfte gegeneinander auf. An der Phasengrenze ist das nicht der Fall. Hier fehlen Nachbarn, die zur eigenen Phase gehören.

Bei einer flüssigen Phase von Wasser (Abb. 1) wirken auf die Moleküle Dipol-Dipol-Momente in alle Raumrichtungen. An der Phasengrenze (Rand eines Tröpfchens) ist das nicht der Fall. Ein Wassermolekül am Rand hat viel weniger Nachbarn. Ein Wassermolekül, das sich aus dem Inneren der Phase an die Phasengrenze bewegt, muss über die Energie verfügen, um einen Teil der Dipol-Dipol-Momente zu überwinden. Bewegt es sich in die andere Richtung, wird entsprechende Energie frei. Um die Fläche der Phasengrenze zu vergrößern, muss Energie aufgewendet werden, da nun mehr Teilchen zur Bildung der größeren Fläche nötig werden. Daher strebt Wasser eine minimale Oberfläche an und bildet somit Tröpfchen.

Richtung der Grenzflächenspannung[Bearbeiten | Quelltext bearbeiten]

Abb. 2: Seifenblase
Abb. 3: Schaumblasen zwischen zwei Glasplatten

Bei einer Seifenblase (Abb. 2) wird die Phase „Blasenhaut“ von beiden Seiten von je einer Gasphase begrenzt. Die zwei Grenzflächen der „Blasenhaut“ spannen die innere Gasphase zusammen. Die Kräfte wirken in der Richtung der Ausdehnung der Blasenhaut. Diese Richtung wird deutlicher, wenn man Abbildung 3 betrachtet. Sie entspricht einem Querschnitt durch Schaum. Die „Blasenhäute“ nehmen die kürzeste Verbindungslinien (Geraden) aufgrund der Richtung der Grenzflächenspannung ein.

Grenzfläche Flüssigkeit-Gas-Wand[Bearbeiten | Quelltext bearbeiten]

Abb.4: Benetzung einer Wand

Berührt eine Grenzfläche Gas-Flüssigkeit eine feste Wand, stellt sich ein bestimmter Winkel zwischen Wand und Oberfläche der Flüssigkeit ein. Abbildung 4 zeigt diesen Kontaktwinkel für einen Fall einer senkrechten Wand, die sich gut benetzen lässt. Je stärker die Benetzung ist, desto kleiner wird der Winkel, und desto höher steigt der obere Rand der Flüssigkeit. Dieses Verhalten in engen Röhren wird Kapillareffekt genannt. Der Benetzungsgrad ist abhängig von der Art der Flüssigkeit, vom Material der Oberfläche und deren Beschaffenheit, wie z. B. seiner Rauheit.

Beeinflussbarkeit der Grenzflächenspannung[Bearbeiten | Quelltext bearbeiten]

Tenside, Emulsion, Schaum, Rauheit