Gustav Roch

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Gustav Roch

Gustav Adolph Roch (* 9. Dezember 1839 in Dresden; † 21. Dezember 1866 in Venedig) war ein deutscher Mathematiker. Er ist bekannt für den Satz von Riemann-Roch.

Gustav Roch, Sohn von Gustav Adolf Roch (Königlicher Küchengehilfe) und Auguste Caroline Roch (geb. Büttner), besuchte die Schule in Dresden und Dresden-Neustadt und studierte zunächst Chemie am Polytechnikum in Dresden. Sein dortiger Mathematikprofessor Oskar Schlömilch erkannte sein mathematisches Talent und beeinflusste ihn zur Mathematik und Physik zu wechseln. 1859 veröffentlichte er eine Arbeit über Elektrodynamik nach André-Marie Ampère in der von Schlömilch herausgegebenen Zeitschrift für Mathematik und Physik, dem weitere Veröffentlichungen über Elektrodynamik und Magnetismus noch als Student folgten. 1859 setzte er seine Studium an der Universität Leipzig fort, wo die Mathematiker August Ferdinand Möbius, Moritz Wilhelm Drobisch, Wilhelm Scheibner und Wilhelm Hankel zu seinen Professoren zählten. Außerdem hörte er Vorlesungen über Botanik, Philologie und Geschichte (Heinrich von Treitschke). Aufgrund seiner Leistungen erhielt er das Kregel-Sternbach-Stipendium, dass ihm die Fortsetzung des Studiums in Göttingen und Berlin ermöglichte. Ab 1861 studierte er an der Universität Göttingen bei dem Physiker Wilhelm Eduard Weber, Ernst Christian Julius Schering, Alfred Enneper, dem Philosophen Hermann Lotze und dem Mathematiker Bernhard Riemann, der ihn besonders beeindruckte, und danach in Berlin, wo er sich zwar nicht als Student einschrieb, aber Kontakte zu Leopold Kronecker, Karl Weierstraß, Ernst Eduard Kummer und Karl Wilhelm Borchardt hatte und in die Physikalische Gesellschaft aufgenommen wurde. 1862 schloss er sein Studium in Leipzig ab (Magister) und wurde im selben Jahr bei Moritz Drobisch und Wilhelm Hankel sowie (da Drobisch sich für außer Stande sah die Dissertation zu beurteilen) Wilhelm Scheibner in Leipzig promoviert (Dissertation: Über die Darstellung von Functionen dreier Variablen durch Potentialausdrücke).[1] Danach blieb er zunächst an der Universität Leipzig. Er hörte dort 1862 Vorlesungen über Wirtschaft (Wilhelm Roscher), Archäologie (Johannes Overbeck) und Geschichte (aber nicht über Mathematik und Physik). 1863 habilitierte er sich an der Universität Halle mit einer Arbeit über Abelsche Funktionen (De theoremate quodam circa functiones Abelianas). Danach hielt er mehrere Vorlesungen in Halle als Privatdozent. 1865 veröffentlichte er die Arbeit „Ueber die Anzahl der willkürlichen Constanten in algebraischen Functionen“, die den Satz von Riemann-Roch enthielt, der die topologischen Eigenschaften (das Geschlecht) einer Riemannfläche mit Eigenschaften des Körpers der auf der Fläche definierten meromorphen Funktionen in Verbindung brachte. Die Benennung des Theorems nach Riemann und Roch erfolgte 1874 durch Max Noether und Alexander Brill (der Beitrag von Riemann war die Riemann-Ungleichung). Schon zuvor publizierte er mehrere Arbeiten über Funktionentheorie in Crelle's Journal. Am 21. August 1866 wurde er außerordentlicher Professor in Halle nach einem positiven Gutachten von Eduard Heine und Otto August Rosenberger. Im Wintersemester 1866/67 war er wegen seiner Tuberkulose-Erkrankung beurlaubt und ging in das mildere Klima Italiens um zu kurieren. Im November 1866 starb er mit 26 Jahren in Venedig an den Folgen der Tuberkulose.

Der Satz von Riemann-Roch spielte eine wichtige Rolle in der algebraischen Geometrie und wurde in den 1920er Jahren auf algebraische Kurven und in den 1950er Jahren auf höhere Dimensionen von Friedrich Hirzebruch verallgemeinert (Satz von Hirzebruch-Riemann-Roch) und von Alexander Grothendieck auf Morphismen zwischen algebraischen Varietäten.

Bedeutende Werke[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Gustav Roch im Mathematics Genealogy Project (englisch)