Hüllenoperator

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Eine Menge aus 8 Punkten und ihre konvexe Hülle

In der Mathematik versteht man unter der Hülle einer Menge eine Obermenge, die groß genug ist, um bestimmte Anforderungen zu erfüllen, und zugleich die kleinste Menge ist, die diese Anforderungen erfüllt. Beispiele sind die konvexe Hülle einer Teilmenge eines Vektorraums, die abgeschlossene Hülle einer Teilmenge eines topologischen Raums oder die transitive Hülle einer zweistelligen Relation. Hüllenoperator bezeichnet die Vorschrift, durch die jeder Menge von Objekten ihre Hülle zugeordnet wird. Die durch einen Hüllenoperator gegebenen Hüllen bilden ein Hüllensystem, also ein Mengensystem mit bestimmten Eigenschaften.

Definitionen[Bearbeiten | Quelltext bearbeiten]

Hüllenoperatoren[Bearbeiten | Quelltext bearbeiten]

Über einer gegebenen Grundmenge ist ein Hüllenoperator eine extensive, monotone, idempotente Abbildung auf der Potenzmenge von , welche jeder Teilmenge eine weitere Teilmenge von , nämlich die Hülle , zuordnet, wobei folgende Bedingungen erfüllt sind:

(Et) Extensivität: , das heißt: Die Hülle von enthält mindestens die Menge selbst.
(M) Monotonie bzw. Isotonie: , das heißt: Wenn Teilmenge von ist, so gilt das entsprechend auch für ihre Hüllen.
(Ip) Idempotenz: , das heißt: Bildet man von der Hülle einer Menge nochmals die Hülle, so bleibt diese unverändert.

Aufgrund der beiden anderen Anforderungen genügt es auch, an Stelle der Idempotenz nur zu fordern, das heißt: Bildet man von der Hülle einer Menge nochmals die Hülle, so wird nichts mehr hinzugefügt.

Äquivalent zu den drei genannten Einzelforderungen ist folgende. heißt Hüllenoperator, wenn für alle gilt:

(Oh): .

Einen Hüllenoperator nennt man auch Abschlussoperator, weil ein zu einer strukturierten Menge (einem topologischen Raum, einer algebraischen Struktur) gehörender Hüllenoperator jede Teilmenge dieser strukturierten Menge auf die kleinste Unterstruktur abbildet, die diese Teilmenge enthält. Die Unterstrukturen (abgeschlossene Mengen im topologischen Raum, algebraische Unterstrukturen) bilden aber gerade die bezüglich der gegebenen Struktur abgeschlossenen Teilmengen.

Algebraische Hüllenoperatoren

Die in der Algebra, der Universellen Algebra, der Geometrie und verwandten Teilgebieten auftretenden Hüllenoperatoren sind in der Regel algebraische Hüllenoperatoren. Dies ist gleichbedeutend damit, dass die diesen Hüllenoperatoren zugehörigen Hüllensysteme algebraisch sind und damit die folgende Endlichkeitsbedingung erfüllen:

(Oa): Zu jeder Teilmenge und für jedes beliebige Element gibt es stets eine endliche Teilmenge mit .

Diese Begriffsbildung ist vor allem aus der Linearen Algebra wohlbekannt, wo in jedem Vektorraum die lineare Hülle einer beliebigen Teilmenge von Vektoren mit der Menge aller Linearkombinationen dieser Vektoren übereinstimmt.

Hüllensysteme[Bearbeiten | Quelltext bearbeiten]

Ein Hüllensystem ist ein unter beliebiger Schnittmengenbildung abgeschlossenes Mengensystem, d. h., ein Hüllensystem über einer Menge ist eine aus Teilmengen der Grundmenge bestehende Menge mit folgenden Eigenschaften:

(Sh0): enthält die Grundmenge: .
(Sh1): Für jede nichtleere Teilmenge von ist der Durchschnitt der Elemente von ein Element aus , oder kurz: .

Mit als Grundmenge ist es sinnvoll, den allgemein mengentheoretisch nicht definierten Durchschnitt über die leere Menge als zu definieren, denn nur so wird erreicht. Dadurch lassen sich die beiden genannten Bedingungen zu einer einzigen äquivalenten Bedingung vereinfachen:

(Sh): Für jede Teilmenge von ist der Durchschnitt der Elemente von ein Element aus , oder kurz: .

Zusammenhang zwischen Hüllensystemen und Hüllenoperatoren[Bearbeiten | Quelltext bearbeiten]

Hüllensysteme und Hüllenoperatoren entsprechen einander:

  • Ist ein Hüllensystem über , dann kann man einen Hüllenoperator auf wie folgt definieren:
für alle .
Die Menge, über die hier der Durchschnitt gebildet wird, ist wegen nicht leer.
  • Umgekehrt kann aus jedem Hüllenoperator auf ein Hüllensystem über gewonnen werden:
.

Es gibt einen einfachen und schnellen Algorithmus zur Erzeugung aller Hüllen eines gegebenen Hüllenoperators (Algorithmus 1 in [1]).

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Betrachten wir die Ebene . Die konvexen Teilmengen der Ebene bilden ein Hüllensystem, der zugehörige Hüllenoperator ist die Bildung der konvexen Hülle einer Teilmenge.
  • Das minimal umgebende Rechteck ist eine Hülle im Sinne dieser Begriffsbildung.
  • Die abgeschlossenen Mengen eines topologischen Raumes bilden ein Hüllensystem. Der zugehörige Hüllenoperator bewirkt die Bildung der abgeschlossenen Hülle einer Teilmenge des zugrundeliegenden topologischen Raumes und wird nach dem polnischen Mathematiker Kuratowski manchmal auch als Kuratowskischer Hüllenoperator bezeichnet. Die abgeschlossene Hülle einer Teilmenge eines topologischen Raums ist die kleinste Obermenge, die abgeschlossen ist unter Grenzwertbildung von Netzen auf der jeweiligen Menge.
  • Ist eine Gruppe gegeben, so bilden ihre Untergruppen ein Hüllensystem. Der zugehörige Hüllenoperator ist die Bildung der Untergruppe, die von einer Teilmenge erzeugt wird.
  • Die Normalteiler einer Gruppe bilden ein Hüllensystem.
  • Jedes Idealsystem ist ein Hüllensystem.
  • Die Bildung der transitiven Hülle einer Relation ist ein Hüllenoperator.
  • Die beiden Verkettungen und einer Galoisverbindung sind Hüllenoperatoren.
  • Die Bildung der Kleeneschen Hülle einer formalen Sprache ist ein Hüllenoperator.
  • Der σ-Operator aus der Maßtheorie, der jeder Menge von Teilmengen eines Raumes die kleinste umfassende σ-Algebra zuordnet, ist ein Hüllenoperator. Genauso gibt es Hüllenoperatoren zur Erzeugung von Dynkin-Systemen und monotonen Klassen.
  • Die Inferenzoperation der formalen Logik ist ein Hüllenoperator.
  • Für den Hüllkörper zu einer Zahlenmenge wird verlangt, dass zu allen Elementen der Menge stets auch ihre Summe, ihr Produkt, ihre Differenz und ihr Quotient (außer bei Division durch Null) und die Zahlen 1 und 0 zur Menge gehören. Der Hüllkörper der Menge {0} ist somit bereits die Menge aller rationalen Zahlen. Erst wenn die Zahlenmenge mindestens eine irrationale Zahl (zum Beispiel ) enthält, ergibt sich ein Körper, der echt umfasst.
  • In jeder Unterkategorie von Set, die als Morphismen nur Inklusionsabbildungen enthält, ist jede Monade ein Hüllenoperator.

Anwendungen auf formale Sprachen und Komplexitätsklassen[Bearbeiten | Quelltext bearbeiten]

Es sei eine Klasse von formalen Sprachen. Wir betrachten folgende Hüllenoperatoren auf :

  • : Abschluss unter Homomorphismen:
    Wenn , dann auch
  • : Abschluss unter -freien Homomorphismen, wie , aber
  • : Abschluss unter inversen Homomorphismen:
    Wenn , dann auch
  • : Abschluss unter Vereinigung:
  • : Abschluss unter Durchschnitt:
  • : Abschluss unter Konkatenation:
  • : Abschluss unter Kleene-Stern:

Wenn eine Klasse und einer der obigen Hüllenoperatoren die Eigenschaft haben, dann heißt unter der entsprechenden Operation (Homomorphismus, -freier Homomorphismus, inverser Homomorphismus, Vereinigung, Durchschnitt, Konkatenation bzw. Kleene-Stern) abgeschlossen.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Marcel Erné: Einführung in die Ordnungstheorie. Bibliographisches Institut, Mannheim u. a. 1982, ISBN 3-411-01638-8.
  • John L. Kelley: General Topology (= Graduate Texts in Mathematics. Band 27). Reprinted edition. Springer, New York u. a. 1975, ISBN 3-540-90125-6.
  • Heinrich Werner: Einführung in die allgemeine Algebra (= BI-Hochschultaschenbücher. Band 120). Bibliographisches Institut, Mannheim u. a. 1978, ISBN 3-411-00120-8.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Ganter, Bernhard and Obiedkov, Sergei (2016): Conceptual Exploration. Springer, ISBN 978-3-662-49290-1