Harmonische Funktion

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Eine harmonische Funktion definiert auf einem Kreisring.

In der Analysis heißt eine reellwertige, zweimal stetig differenzierbare Funktion harmonisch, wenn die Anwendung des Laplace-Operators auf die Funktion null ergibt, die Funktion also eine Lösung der Laplace-Gleichung ist. Das Konzept der harmonischen Funktionen kann man auch auf Distributionen und Differentialformen übertragen.

Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine offene Teilmenge. Eine Funktion heißt harmonisch in , falls sie zweimal stetig differenzierbar ist und für alle

gilt. Dabei bezeichnet den Laplace-Operator.

Mittelwerteigenschaft[Bearbeiten | Quelltext bearbeiten]

Die wichtigste Eigenschaft harmonischer Funktionen ist die Mittelwerteigenschaft, welche äquivalent ist zur Definition:

Eine stetige Funktion ist genau dann harmonisch, wenn sie die Mittelwerteigenschaft erfüllt, das heißt, wenn

für alle Kugeln mit . Hierbei bezeichnet das Oberflächenmaß der -dimensionalen Einheitssphäre.

Weitere Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die weiteren Eigenschaften der harmonischen Funktionen sind größtenteils Konsequenzen der Mittelwerteigenschaft.

  • Maximumprinzip: Im Innern eines zusammenhängenden Definitionsgebietes nimmt eine harmonische Funktion ihr Maximum und ihr Minimum nie an, außer wenn sie konstant ist. Besitzt die Funktion zudem eine stetige Fortsetzung auf den Abschluss , so werden Maximum und Minimum auf dem Rand angenommen.
  • Glattheit: Eine harmonische Funktion ist beliebig oft differenzierbar. Dies ist insbesondere bei der Formulierung mit Hilfe der Mittelwerteigenschaft bemerkenswert, wo nur die Stetigkeit der Funktion vorausgesetzt wird.
  • Abschätzung der Ableitungen: Sei harmonisch in . Dann gilt für die Ableitungen

    wobei das Volumen der -dimensionalen Einheitskugel bezeichnet.
  • Analytizität: Aus der Abschätzung der Ableitungen folgt, dass jede harmonische Funktion in eine konvergente Taylorreihe entwickelt werden kann.
  • Satz von Liouville: Eine beschränkte harmonische Funktion ist konstant.
  • Harnack-Ungleichung: Für jede zusammenhängende, offene und relativ kompakte Teilmenge gibt es eine Konstante , die nur von dem Gebiet abhängt, so dass für jede in harmonische und nichtnegative Funktion

    gilt.
  • Im Sonderfall für ein einfach zusammenhängendes Gebiet können die harmonischen Funktionen als Realteile analytischer Funktionen einer komplexen Variablen aufgefasst werden.
  • Jede harmonische Funktion ist auch eine biharmonische Funktion.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Die Grundlösung

ist eine auf harmonische Funktion, worin das Maß der Einheitssphäre im bezeichnet. Versehen mit dieser Normierung spielt die Grundlösung eine fundamentale Rolle in der Theorie zur Poisson-Gleichung.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Lawrence C. Evans: Partial Differential Equations. Reprinted with corrections. American Mathematical Society, Providence RI 2002, ISBN 0-8218-0772-2 (Graduate studies in mathematics 19).