Hartmetall

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Hartmetall-Gewindefräser

Hartmetalle sind Metallmatrix-Verbundwerkstoffe, bei denen verschiedenartige Hartstoffe, die als kleine Partikel vorliegen, durch eine Matrix aus Metall zusammengehalten werden. Hartmetalle sind dadurch etwas weniger hart als reine Hartstoffe, aber deutlich fester. Sie werden allgemein als Werkstoff für Werkzeuge genutzt, insbesondere als Schneidstoff (für Drehmeißel, Bohrer und Fräswerkzeuge). Hartmetalle sind deutlich härter als gewöhnliche Metalle und Legierungen, sogar härter als gehärteter Stahl, dafür aber bruchempfindlicher.

Als Hartstoff kommt meistens Wolframcarbid (WC) zum Einsatz, es kann sich aber auch um Titancarbid (TiC), Titannitrid (TiN), Niobcarbid, Tantalcarbid oder Vanadiumcarbid handeln. Als Bindemetall für die Matrix wird bei WC-Sorten Kobalt genutzt, sonst vor allem Nickel oder Mischungen aus beiden. Folgende Gruppen werden unterschieden:

Mit Hartmetallen sind wegen der Temperaturbeständigkeit bis etwa 900 °C dreimal höhere Schnittgeschwindigkeiten möglich als mit Schnellarbeitsstahl. Schneidstoffe mit noch höheren Härten als Hartmetalle sind Schneidkeramiken, Bornitrid und Diamant.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Gegossenes Hartmetall wurde 1914 von Lohman und Voigtländer zum Patent angemeldet, doch hat es sich aufgrund seiner Sprödheit nicht bewährt. Gesintertes Hartmetall konnte 1923 von Karl Schröter[1] und Heinrich Baumhauer[2] zum Patent angemeldet werden, welches die Fa. Osram aufkaufte. 1926 brachte dann die Firma Krupp Hartmetall unter dem Namen Widia (Wie Diamant) auf den Markt.[3][4] Pobedit wurde 1929 in der UdSSR von der gleichnamigen Firma entwickelt.

Zusammensetzung[Bearbeiten | Quelltext bearbeiten]

Hartmetall besteht meistens aus 73–97 % Wolframcarbid (Hartstoff-Phase) und 3–27 % Cobalt (Matrix, Bindemittel). Es gibt jedoch auch Sondersorten, bei welchen als Binder Nickel zum Einsatz kommt. Dadurch weist das Hartmetall eine besonders hohe Korrosionsbeständigkeit auf und ist in aller Regel nicht magnetisierbar.[5] Weiterhin gibt es noch die Möglichkeit auf besonders zähe Binder aus einer Eisen-Nickel-Cobalt Mischung zurückzugreifen. Die Wolframcarbidkörner sind durchschnittlich etwa 0,2–6 Mikrometer groß. Eine grobe Einteilung der verschiedenen Korngrößen ist in folgender Tabelle vorgenommen.[6]

Korngröße WC [µm] Bezeichnung in Deutsch Bezeichnung in Englisch
< 0,2 Nano Nano
0,2 - 0,5 Ultrafein Ultrafine
0,5 - 0,8 Feinst Submicron
0,8 - 1,3 Fein Fine
1,3 - 2,5 Mittel Medium
2,5 - 6,0 Grob Coarse
> 6,0 Extragrob Extracoarse

Gegossenes Hartmetall, das noch häufig in der Bearbeitung von frischem Holz verwendet wird, bezeichnet man als Stellite. Der Vorteil von Stellite bei einer Holzsägeanwendung ist, dass es vergleichsweise einfach auf den Sägengrundkörper aufzulöten ist. Anschließend kann es mit kostengünstigen Schleifscheiben in die gewünschte Geometrie geschliffen werden. Stellitsägen können öfter geschärft werden als Hartmetallsägen. Bei dünnen Holzsägen ist es problematisch, die Hartmetallschneide fest auf den Sägengrundkörper aufzubringen. Selbst bei einer Fertigung mit Plasmaschweißgeräten kommt es immer wieder zu Zahnausfall während des Einsatzes der Säge. Ein weiterer Nachteil ist, dass Hartmetallsägen mit einer teuren Diamantschleifscheibe geschärft werden müssen, während der Grundkörper mit einer Steinscheibe geschärft werden soll, da der Kohlenstoff des Diamanten eine hohe Affinität zu Stahl hat und die Diamantkörner verschleißen.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Hartmetalle unterscheiden sich von Stählen insbesondere hinsichtlich folgender Eigenschaften:

Viele Hartmetalle weisen einen E-Modul zwischen 400 und 650 GPa auf. Stähle liegen hier zwischen 180 und 240 GPa. Für Co-gebundene Hartmetalle kann davon ausgegangen werden, dass mit abnehmenden Cobaltgehalt der E-Modul in etwa linear zunimmt. Dies ist auf den zunehmenden Einfluss der Hartstoffschicht in Form von Wolframcarbid zurückzuführen.[7] Durch den im Vergleich zu Stahl höheren E-Modul können Hartmetalle dazu verwendet werden, um bei gleichem Trägheitsmoment eine wesentlich steifere Struktur zu realisieren. Die Dichte von Hartmetallen bewegt sich in der Regel zwischen 12,75 bis 15,20 g/cm3. Im Vergleich hierzu liegen die meisten Stähle bei etwa 7,85 g/cm3. Die Härte von Hartmetallen kann bis zu 2000 HV30 erreichen. Auch hier zeigt sich, dass mit abnehmenden Cobaltgehalt die Härte zunimmt. Die Druckfestigkeit von Hartmetallen kann Werte bis über 8000 MPa erreichen und nimmt ebenfalls mit abnehmenden Cobaltgehalt zu. Bei der Biegebruchfestigkeit können typischerweise Werte zwischen etwa 2000 und 4000 MPa erwartet werden. Im Allgemeinen kann davon ausgegangen werden, dass eine Verringerung der Korngröße die Biegebruchfestigkeit, Härte und Druckfestigkeit der Hartmetalle positiv beeinflussen. Jedoch ist an dieser Stelle festzuhalten, dass dadurch der Aufwand zur Herstellung der Hartmetalle deutlich erhöht wird. So müssen nicht nur feinere Pulver als Ausgangswerkstoff zur Verfügung gestellt werden, es bedarf auch einer besonderen Prozessführung beim Sintern der Hartmetalle.

Herstellung[Bearbeiten | Quelltext bearbeiten]

Die Herstellung von Hartmetall erfolgt in einem mehrstufigen Prozess. Im Groben können folgende Schritte der Hartmetallherstellung unterschieden werden:

  • Mahlen und Mischen
  • Formgebung
  • Sintern

Mahlen und Mischen[Bearbeiten | Quelltext bearbeiten]

Im Rahmen dieses Vorgangs werden die gewünschten Inhaltsstoffe des Hartmetalls zu sehr feinem Pulver mit Korngrößen herab bis zu 0,2 µm vermahlen und dabei gleichzeitig vermischt. Dieser Vorgang findet häufig in Kugelmühlen bzw. einem Attritor statt. Diese Mühlen müssen mit verschiedenen Sicherheitseinrichtungen, unter anderem mit einer Absaugung betrieben werden, weil Cobalt für den Menschen schädlich ist und die entstehenden sehr feinen Stäube unter Umständen lungengängig sein könnten. Als Mahlflüssigkeit kommen in der Regel organische Lösungsmittel zum Einsatz, in der jüngeren Vergangenheit wird jedoch vermehrt Wasser verwendet. Durch die Zugabe eines organischen Binders, beispielsweise Paraffin, gegen Ende des Mahlvorgangs erhält man nach dem Trocknen eine formbare Masse, die im nächsten Schritt zum Grünling gepresst werden kann. Das Trocknen wird mittels Verdampfen der Mahlflüssigkeit oder Sprühtrocknung vorgenommen.

Formgebung[Bearbeiten | Quelltext bearbeiten]

Die im vorigen Schritt konfektionierten und getrocknetem Pulver werden in diesem Schritt zu einem sogenannten Grünling gepresst. Dieser Grünling weist bereits alle geometrischen Eigenschaften des gewünschten fertigen Bauteils auf, jedoch müssen hierbei noch Schwindmaße berücksichtigt werden, da es zu einer Volumenänderung während des Sinterns kommt. Gängige Verfahren zur Herstellung von Grünlingen sind in direkte und indirekte Methoden zu unterscheiden:

Sintern und Phasen[Bearbeiten | Quelltext bearbeiten]

Beim Sintern kommt in den meisten Fällen das sogenannte heißisostatischen Pressen (HIP) zum Einsatz. Dabei wird ausgenutzt, dass die Hartstoff-Phase (α-Phase) und die Binder-Phase (β-Phase) unterschiedliche Schmelzpunkte haben. In der Regel hat die α-Phase einen deutlich höheren Schmelzpunkt als die β-Phase. Beim Sintern wird die Temperatur im Prozess nun so eingestellt, dass sie sich über dem Schmelzpunkt der Binder-Phase aber unter dem Schmelzpunkt der Hartstoff-Phase befindet. Durch den während des HIP aufgebrachten äußeren Drucks wird das Gemenge aus α- und β-Phase bei Erreichen des Schmelzpunkts der β-Phase verdichtet und im Idealfall ein fehlstellenfreies Material erzeugt. Nach erfolgter Abkühlung und Erstarrung der Binder-Phase kann das nun entstandene Hartmetall weiter verwendet werden. Um besondere Eigenschaften der Hartmetalle zu erreichen gibt es auch dreiphasige Hartmetalle, die neben einer α- und β-Phase eine zusätzliche γ-Phase aufweisen. Klassische Vertreter hierfür sind unter anderem Titancarbid (TiC) bzw. Tantalcarbid (TaC). Diese Zusätze verbessern in aller Regel die Oxidationsbeständigkeit sowie thermische Stabilität und hemmen das Kornwachstum während des HIP-Prozesses.

Stoffeigenschaften ändern[Bearbeiten | Quelltext bearbeiten]

Danach wird der Grünling je nach Herstellverfahren bei Temperaturen bis 1600 °C im Vakuum oder in einer Schutzatmosphäre und Drücken bis 5000 bar gesintert. Das Pulver kann dabei in einem Gesenk oder in verschweißte Stahlbleche eingepackt erhitzt und verdichtet werden. Es kommen unterschiedliche, in der Regel aktive, den Sinterprozess unterstützende Gase zum Einsatz. Das Verfahren liefert hochfeste und dichte Werkstücke.

Beschichten[Bearbeiten | Quelltext bearbeiten]

Für die gängigste Anwendung, Hartmetall-Wendeschneidplatten, folgen oft noch die Arbeitsgänge Schleifen (Unterseite, gegebenenfalls Oberseite, Kanten, Radien), Beschichten (CVD-Verfahren, PVD-Verfahren, Vakuum-Elektroden-Abscheiden, etc.), Beschriften und Verpacken.

Bearbeitung[Bearbeiten | Quelltext bearbeiten]

Aufgrund der hohen Härte werden Hartmetalle in aller Regel durch funkenerosive Verfahren, beispielsweise Funkenerodieren, oder spanende Verfahren mit geometrisch unbestimmter Schneide, unter anderem Schleifen, bearbeitet.

In der Umformtechnik schließt sich an das Schleifen fast immer noch ein Polieren an. Dadurch können zum einen Druckeigenspannungen in die Oberfläche eingebracht werden und zum anderen wird die Rauheit minimiert, was sich positiv auf die Kerbwirkung der Oberfläche auswirkt. Diese beiden Mechanismen bewirken eine signifikante Steigerung der Standmenge.[8]

Es gibt jedoch insbesondere im Bereich der Umformtechnik Hartmetalle, die auch durch spanende Verfahren mittels geometrisch bestimmter Schneide, beispielsweise Drehen und Fräsen, bearbeitet werden können. Dadurch ist im Vergleich zu Erodieren bzw. Schleifen eine deutliche Kosteneinsparung zu erzielen. Diese speziellen Hartmetalle haben einen hohen Kobaltgehalt von über 20 %.

Werkstoff-Varianten: Cermets[Bearbeiten | Quelltext bearbeiten]

Es gibt neben den konventionellen Hartmetallen auf Wolframcarbid-Basis auch Hartmetalle, die nur Titancarbid und Titannitrid als Hartstoffe beinhalten. Die Bindephase besteht dabei aus Nickel, Cobalt und Molybdän. Diese als Cermets (ceramic + metall) bezeichneten Hartmetalle zeichnen sich durch eine weiter erhöhte Warmfestigkeit und Härte und durch sehr geringe Diffusions- und Adhäsionsneigung aus. So sind noch höhere Schnittgeschwindigkeiten zum Schlichten von Metall möglich. Aus diesem Grund werden die Cermet-Schneidstoffe vorwiegend zum High Speed Cutting (HSC) Verfahren eingesetzt.

Sorten[Bearbeiten | Quelltext bearbeiten]

Gemäß der ISO 513 werden die Hartmetalle in unterschiedliche Gruppen unterteilt. Üblich sind dabei die in nachfolgender Tabelle dargestellten Gruppen.

ISO-Klasse Zu bearbeitendes Material Beispiel für Material
P Unlegierter Stahl / Stahlguss S235JR, S355JR
Niedriglegierter Stahl / Stahlguss C45, 16MnCr5
Hochlegierter Stahl / Stahlguss X153CrMoV12, X210Cr12
M Edelstahl / Edelstahlguss G45CrNiMo4-2, G-X6CrNiMo 18-10
K Gusseisen mit Kugelgraphit (GGG) EN-GJS-400-18, EN-GJS-900-2
Grauguss (GG) EN-GJL-150, EN-GJL-350
Temperguss EN-GJMW-350-4, EN-GJMW-550-4
N Aluminiumknetlegierung AlMg3, AlMgSi1
Vergüteter Aluminiumguss G-AlMg3, G-AlCu4TiMg
Kupferlegierungen CuZn28, CuZn38Pb0,5
Allgemein Nichtmetallische Werkstoffe Kunststoff, Holz
S Hochtemperaturlegierungen / Superlegierungen Hastelloy, Inconel
Titanlegierung Ti99,8, TiAl6Zr5
H Gehärteter Stahl X153CrMoV12, X210Cr12
Schalenhartguss GX165CrMoV12
Gusseisen EN-GJL-150, EN-GJL-350

Der Sortenkennzeichnung folgt eine Kennzahl, die das Verschleißverhalten und die Zähigkeit beschreibt. Je kleiner die Zahl, umso größer ist der Verschleißwiderstand, aber umso geringer die Zähigkeit. Typische Kennzahlen sind: 01, 10, 20, 30, 40, 50 (z. B. P 01, M 30, K 05). Endungen F, bzw. UF bedeuten fein bzw. ultrafein (z. B. K40UF)

Hersteller[Bearbeiten | Quelltext bearbeiten]

Im deutschsprachigen Raum haben sich die Hersteller von Hartmetall, sowie die Lieferanten von Metallpulvern und Anlagentechnik, in dem Interessenverband Fachverband Pulvermetallurgie (FPM) zusammengeschlossen. International tätige Hartmetall-Hersteller sind unter anderem:

Anwendungsgebiete[Bearbeiten | Quelltext bearbeiten]

Nutzung als Schneidstoff[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Schneidstoff

Im Gegensatz zu konventionellen Schneidstoffen, beispielsweise Schnellarbeitsstählen, weisen Hartmetalle eine geringe Bruchzähigkeit und Thermoschockbeständigkeit auf. Demgegenüber stehen jedoch signifikante Vorteile wie eine höhere Härte und Temperaturbeständigkeit. Vor allem die hohe Härte führt zu einem hohen abrasiven Verschleißwiderstand. Alleine dies ermöglicht höhere Schnittgeschwindigkeiten. Diese können auch realisiert werden, da Hartmetalle eine Temperaturbeständigkeit von bis zu 1100 °C aufweisen. Dadurch sind sie für die Zerspanung als Schneidstoff seit langem im Einsatz, da dadurch Schnittgeschwindigkeiten von mehr als 350 m/min erreichbar sind. HSS erreichen im Vergleich hierzu Werte von ca. 75 m/min.[11] Klassischer Anwendungsfall von Hartmetall-Werkzeugen ist die zerspanende Bearbeitung von Metallen per Drehen, Fräsen und Bohren. Daneben gibt es auch etliche andere Anwendungsfälle; zum Beispiel sind die Messer von Zigarettenpapierschneideinrichtungen aus Hartmetall gefertigt. Auch der Einsatz von Werkzeugen in Gesteinsmühlen und in Bergwerken ist eine Domäne von Hartmetallen: Gesteine zu bohren, Tunnel aufzuschließen mithilfe von Schrämmaschinen, Walzenladern, Teilschnittmaschinen oder Schildvortriebsmaschinen sind samt und sonders prädestiniert für die Verwendung von Hartmetall-bestückten Bohr- und Schneidwerkzeugen. Ein weiterer Anwendungsfall ist das Auftrennen von Harthölzern aus den Tropen mit Hartmetallsägen. Mit herkömmlichen Stellitesägen ist es oft nicht möglich, derartige Hölzer aufzutrennen.

Nutzung beim Umformen[Bearbeiten | Quelltext bearbeiten]

Hartmetalle werden bei einer Vielzahl von Umformverfahren zur Herstellung von Aktivelementen, beispielsweise Matrizen und Stempeln, eingesetzt. Dies wird vor allem dadurch begründet, dass sie im Vergleich zu Werkzeugstählen eine signifikant höhere Verschleißfestigkeit aufweisen. Bei folgenden Umformverfahren kommen Aktivelemente aus Hartmetall häufig zum Einsatz:

Neben Anwendungen in der Umformtechnik kommen Hartmetalle auch in der Textilindustrie zum Einsatz. So werden beispielsweise Düsen beim Spinnen von Textilien aus Hartmetall hergestellt.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Schröter, Karl: Verfahren zur Herstellung einer harten Schmelzlegierung fuer Arbeitswerkzeuge, insbesondere Ziehsteine, Deutsches Reichspatent No. 498349A, 1923.
  2. Baumhauer, Heinrich: Hard tool and implement and in process of making, General Electric Company, US-Patent No. 1512191A, 1922.
  3. Werner Degner, Hans Lutz, Erhard Smejkal: Spanende Formung, Carl Hanser Verlag, 2002, ISBN 3446221387, S. 67.
  4. Wolfgang Filì: Die kreativen Zeiten fangen jetzt erst an. In: Industrieanzeiger.de
  5. Übersicht Binder von Hartmetallen
  6. Werner Schatt, Klaus-Peter Wieters, Bernd Kieback: Pulvermetallurgie – Technologien und Werkstoffe. Springer, 2008, 8. Auflage
  7. K.J. Brookes: World Directory and Handbook of Hardmetals and Hard Materials. United Kingdom: International Carbide Data, 1992, 5. Auflage
  8. Kolja Andreas: Einfluss der Oberflächenbeschaffenheit auf das Werkzeugeinsatzverhalten beim Kaltfließpressen. In: Fertigungstechnik Erlangen. Nr. 275, Meisenbach, Bamberg, 2015, ISBN 978-3-87525-398-6
  9. IMC Companies. In: imc-companies.com. Abgerufen am 21. Dezember 2016 (englisch).
  10. Sandvik company Presentation 2015/2016 (PDF-Datei)
  11. http://www.zps-fn.de/empfohlene-schnittgeschwindigkeit-fur-hss-fraser/

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Hartmetall – Sammlung von Bildern, Videos und Audiodateien

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Schedler Wolfgang: Hartmetall für den Praktiker: Aufbau, Herstellung, Eigenschaften und industrielle Anwendung einer modernen Werkstoffgruppe. 1. Auflage. VDI-Verlag, 1998, ISBN 3-540-62119-9.
  • Hans Kolaska: Pulvermetallurgie der Hartmetalle. FPM, Hagen 1992.
  • H. E. Exner: Physical and chemical nature of cemented carbides. In: International Metals Reviews. 24, 1979, S. 149-173. doi:10.1179/imtr.1979.24.1.149.