Hausman-Test

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Hausman-Spezifikationstest, auch Durbin-Wu-Hausman-Test genannt, ist ein Testverfahren aus der mathematischen Statistik. Er ist ein Test auf Endogenität, das heißt ein Test auf den Zusammenhang zwischen den erklärenden (unabhängigen) Variablen und der Störgröße. Er wurde 1978 von Jerry Hausman entwickelt, um bei Paneldatenmodellen zu entscheiden, ob eher ein Fixed-Effects-Modell (FE-Modell) oder ein Random-Effects-Modell (RE-Modell) vorliegt (siehe Lineare Paneldatenmodelle). Ersteres unterstellt für jedes betrachtete Individuum eine individuelle (mittels Regression zu ermittelnde) Abweichung vom Panel-Mittelwert, während diese Abweichung beim RE-Modell eine normalverteilte Zufallsgröße darstellt.

Teststatistik[Bearbeiten | Quelltext bearbeiten]

Die Nullhypothese, dass ein RE-Modell vorliegt, wird abgelehnt, wenn die Teststatistik größer ist als das entsprechende Perzentil der -Verteilung mit K Freiheitsgraden:

Die benutzten Variablen sind hierbei wie folgt definiert:

  • : Konstanter Regressionsparameter (Achsenabschnitt)
  • : Zahl der Regressoren im Paneldatenmodell
  • : Vektor der geschätzten K Regressionskoeffizienten der Random-Effects-Schätzung
  • : Vektor der geschätzten K Regressionskoeffizienten der Fixed-Effects-Schätzung
  • : geschätzte Varianz-Kovarianzmatrix der FE-Schätzer
  • : Fehlerterme, Abweichung zwischen geschätztem und beobachtetem Wert

Test auf Endogenität[Bearbeiten | Quelltext bearbeiten]

Falls die Schätzer nicht verzerrt sind (also gilt und somit keine Edogenität vorliegt), ist der Fixed-Effects-Schätzer immer konsistent (führt also mit zunehmender Zahl der Beobachtungen immer näher an den wahren Wert des Parameters heran), während der Random-Effects-Schätzer nur dann konsistent, aber zusätzlich auch noch effizient ist, wenn und unkorreliert sind. Der Hausman-Test vergleicht die Regressoren der beiden Verfahren. Unterscheiden sie sich signifikant, wird die Nullhypothese abgelehnt. Somit ist eine Schätzung mittels Fixed Effects angeraten.

Beim Testen auf Endogenität stellt eine einfache Variante des Hausman-Tests die Untersuchung einzelner Variablen mit Hilfe eines Residuen-Tests dar. Dabei werden die folgenden beiden Thesen gegeneinander getestet:

Der Test besteht aus zwei Stufen: Zunächst wird die zu untersuchende Variable auf alle exogenen Variablen des Modells regressiert. Die Residuen dieser Regression werden dann in der zweiten Stufe des Tests in der Ausgangsgleichung als zusätzlicher Regressor verwendet. Das so erweiterte Modell wird mit Hilfe der Methode der kleinsten Quadrate geschätzt. Ist der Koeffizient der Residuenvariablen signifikant, besteht Korrelation zwischen Störgröße und dem untersuchten Regressor, das heißt die Nullhypothese muss abgelehnt werden und die Existenz von Endogenität als bestätigt angesehen werden[1].

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Marno Verbeek (2004): A Guide to Modern Econometrics. 2. Auflage, Chichester: John Wiley & Sons.
  • Katja Wolf (2005): Vergleich von Schätz- und Testverfahren unter alternativen Spezifikationen linearer Panelmodelle. Lohmar/Köln: Eul.
  • Jerry A. Hausman (1978): Specification Tests in Econometrics. In: Econometrica 46/6, S. 1251–1271.

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Wooldridge, Jeffrey M. (2003): Introductory Econometrics: a Modern Approach. 2. Auflage, Australia/Cincinnati (Ohio): South-Western College Pub.