Hurwitzpolynom

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Hurwitzkriterium)
Wechseln zu: Navigation, Suche

Ein Hurwitzpolynom (nach Adolf Hurwitz) ist ein reelles Polynom, dessen Nullstellen alle einen echt negativen Realteil haben.

Definition und notwendige Bedingung[Bearbeiten]

Ein reelles Polynom (alle a_i\in\R)

 N(s) = \sum_{i=0}^n a_i s^i = a_n s^n + a_{n-1} s^{n-1} + ... + a_0

wird also Hurwitzpolynom genannt, wenn gilt:

 N(r_i) = 0\, \Rightarrow\, \mathrm{Re}(r_i) < 0,\quad i=1,\ldots,n.

Man kann zeigen, dass die Koeffizienten eines normierten Hurwitzpolynoms (a_n = 1) positiv sein müssen (Im Umkehrschluss muss ein normiertes Polynom mit reellen Koeffizienten, bei dem ein Koeffizient kleiner oder gleich Null ist, eine Nullstelle haben, die keinen echt negativen Realteil besitzt).

Die Bedingung, dass die Koeffizienten positiv sind, ist also notwendig. Für den Fall eines Polynoms 1. (n = 1) oder 2. Grades (n = 2) ist diese Bedingung auch hinreichend.

Für n ≥ 3 (ein Polynom dritten oder höheren Grades) wird eine neue hinreichende und notwendige Bedingung benötigt: die Hurwitz-Determinante.

Hurwitz-Kriterium[Bearbeiten]

Im Folgenden gehen wir davon aus, dass der Koeffizient a_n positiv ist. Ist dieses im ursprünglichen Polynom nicht der Fall, kann es durch Multiplikation des Polynoms mit -1 erreicht werden. Dabei ändern sich die Nullstellen des Polynoms nicht. Aus den Koeffizienten des Polynoms a_0,\ldots,a_n wird zunächst die Determinante der n×n-Hurwitz-Matrix, die sogenannte Hurwitz-Determinante gebildet:


  H=\begin{vmatrix}
   a_{n-1} & a_{n-3} & a_{n-5} & a_{n-7} & ... \\
   a_{n-0} & a_{n-2} & a_{n-4} & a_{n-6} & ... \\
   0       & a_{n-1} & a_{n-3} & a_{n-5} & ... \\
   0       & a_{n-0} & a_{n-2} & a_{n-4} & ... \\
   ... & ... & ... & ... & ... \\
  \end{vmatrix}


Nicht vorhandene Koeffizienten werden also durch eine Null ausgedrückt. Das Polynom ist genau dann ein Hurwitz-Polynom, wenn alle "nordwestlichen Unterdeterminanten" (auch Hauptminoren genannt) positiv sind. Die Matrix ist dann positiv definit.

Im Beispiel sind die nordwestlichen Unterdeterminanten für den Fall n=3:


\begin{align}
H_1 &= \begin{vmatrix} a_{n-1} \end{vmatrix} &&= \begin{vmatrix}
   a_{2} 
   \end{vmatrix} &&= a_{2} > 0 \\[2mm]
H_2 &= \begin{vmatrix}
   a_{n-1} & a_{n-3} \\
   a_{n-0} & a_{n-2} \\
   \end{vmatrix} &&= \begin{vmatrix}
   a_{2} & a_{0} \\
   a_{3} & a_{1} \\
   \end{vmatrix} &&= a_2 a_1 - a_0 a_3 > 0\\[2mm]
H_3 &= \begin{vmatrix}
   a_{n-1} & a_{n-3} & a_{n-5} \\
   a_{n-0} & a_{n-2} & a_{n-4} \\
   0       & a_{n-1} & a_{n-3} \\
\end{vmatrix} &&=
\begin{vmatrix}
   a_{2} & a_{0} &   0   \\
   a_{3} & a_{1} &   0   \\
     0   & a_{2} & a_{0} \\
\end{vmatrix} &&= a_0 H_2 - a_2 (a_2\cdot 0 - a_3 \cdot 0 ) = a_0 H_2 > 0
\end{align}
(Entwicklung nach 3. Zeile, 3. Spalte)

Mit unseren Vorüberlegungen zur notwendigen Bedingung ergibt sich also für n=3 die zusätzliche Forderung  a_2 a_1 > a_0 a_3 . Diese ist für  a_0=a_1=a_2=a_3=1 nicht erfüllt.

Dieses Vorgehen ("Verschieben" und "Auffüllen") wird so lange wiederholt, bis eine quadratische (n,n)-Matrix entstanden ist.

In der Literatur finden sich auch andere Definitionen der Hurwitzmatrix. Die Koeffizienten sind oft anders benannt. Hurwitz selber hat in seiner Veröffentlichung das Polynom mit  a_0 x^n  + a_1 x^{n-1} + ... + a_n angesetzt.

Eine andere Schreibweise für die Hurwitzdeterminante ist:


  H_{z}=\begin{vmatrix}
   a_{1} & a_{0} & 0 & 0 & 0 & ... & 0\\
   a_{3} & a_{2} & a_{1} & a_{0} & 0 & ... & 0 \\
   a_{5} & a_{4} & a_{3} & a_{2} & a_{1} & ... & 0 \\
   \vdots & & & & & & \vdots \\
   a_{2z-1} & a_{2z-2} & ... & ...  & ... & ... & a_{z} \\
  \end{vmatrix}

Anwendung[Bearbeiten]

Hurwitzpolynome werden in der Systemtheorie verwendet, um ein zeitkontinuierliches System auf asymptotische Stabilität hin zu untersuchen: Ist der Nenner der Systemfunktion ein Hurwitzpolynom, so ist das System asymptotisch stabil.

Literatur[Bearbeiten]

  • Adolf Hurwitz: Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Teilen besitzt. In: Mathematische Annalen Nr. 46, Leipzig 1895, S. 273–285

Weblinks[Bearbeiten]