Impfstoffwirksamkeit

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der medizinischen Statistik und Infektionsepidemiologie gehört die Ermittlung der Impfstoffwirksamkeit (IW),[1] auch Impfwirksamkeit,[2] Schutzwirkung,[3] (englisch vaccine efficacy) oder Impfeffekt[4] genannt, neben der Kosten-Nutzen-Effizienz und der Impfstoffsicherheit zu den wichtigsten Voraussetzungen für die Empfehlung eines Impfstoffs. Die Impfstoffwirksamkeit ist nicht zu verwechseln mit der (üblicherweise durch Beobachtungsstudien gemessenen) Impfstoffeffektivität (englisch vaccine effectiveness).

Die Impfstoffwirksamkeit ist die direkte Wirkung des Impfstoffs, die für die Bewertung eines Maßnahmenprogramms bei Infektionskrankheiten herangezogen wird und errechnet sich als relative Reduktion des Risikos, unter den Geimpften im Vergleich zu Nichtgeimpften an der Zielkrankheit zu erkranken. Es ist damit ein Vergleich des Risikos zwischen Geimpften und Ungeimpften: Wenn beispielsweise halb so viele Geimpfte erkranken wie Ungeimpfte, errechnet sich die Impfstoffwirksamkeit auf 50 Prozent.[5]

Die Impfstoffwirksamkeit wird bestenfalls in randomisierten kontrollierten Studien unter „optimalen Bedingungen“ ermittelt. „Optimale Bedingungen“ bedeutet hierbei, dass bestimmte Kriterien eingehalten werden, wie z. B. eine sachgerechte Auswahl von (üblicherweise gesunden) Probanden oder die überprüfte und zeitgerechte Verabreichung des Impfstoffs und eine funktionierende Kühlkette.[6]

Die Formel für die Impfstoffwirksamkeit wurde 1915 von den Statistikern Major Greenwood und George Udny Yule in ihrer Arbeit The Statistics of Anti-Typhoid and Anti-Cholera Inoculations, and the Interpretation of Such Statistics in General. für die Abschätzung der Wirksamkeit der Cholera- und Typhusimpfstoffe entwickelt.[7] Sie liefert eine grobe, aber schnelle Abschätzung der Wirksamkeit einer Impfung in der Zielpopulation. Die Impfstoffwirksamkeit wird aus dem relativen Risiko einer Ansteckung bei geimpften und ungeimpften Individuen abgeleitet. Für die Berechnung der Impfstoffwirksamkeit ist es ausreichend, den Anteil der geimpften Personen an der Zielpopulation und den Anteil der Geimpften unter allen Erkrankten zu bestimmen.[8]

Formel für die Impfstoffwirksamkeit[Bearbeiten | Quelltext bearbeiten]

Sei vorausgesetzt, dass das Infektionsrisiko für geimpfte und ungeimpfte Individuen gleich ist und dass die Impfungen in der Bevölkerung gemäß dem Randomisierungsprinzip (Zufallszuteilung) erfolgen. Die Impfstoffwirksamkeit wird allgemein ausgedrückt als eine proportionale Reduktion der Inzidenzrate (IR) der  Zielerkrankung unter geimpften () im Vergleich zu ungeimpften Personen (). Die Inzidenzrate gibt das Verhältnis von neuinfizierten bzw. erkrankten Personen bezogen auf die Gesamtzahl an Personen unter Risiko an.[9] Sei die Anzahl der Erkrankten unter geimpften und die Anzahl der Erkrankten unter ungeimpften Personen (siehe Inzidenz). Die Impfstoffwirksamkeit (IW) lässt sich berechnen als das Verhältnis der Erkrankungsquote bei Geimpften zu der bei Nichtgeimpften:[10][11]

,

wobei

  • : Inzidenzrate unter den geimpften Personen (Erkrankungsquote bei Geimpften)
  • : Inzidenzrate unter den ungeimpften Personen (Erkrankungsquote bei Nichtgeimpften)

Äquivalent lässt sich die Impfstoffwirksamkeit auch direkt aus dem  relativen Risiko (RR)  der  Geimpften in Bezug auf die Zielerkrankung im Vergleich zu Ungeimpften berechnen:

.

Die Impfstoffwirksamkeit ist dann dessen Komplement:[12]

,

wobei die beiden Anteile und gegeben sind durch:

und mit
  • : Anteil der geimpften Personen in der Zielpopulation
  • : Anteil der Geimpften unter allen Erkrankten

Die obige Formel entspricht näherungsweise dem Komplement des Chancenverhältnisses, das aus Fall-Kontroll-Studien erhalten werden kann. Als solches kann die Formel verwendet werden, um die Wirksamkeit des Impfstoffs basierend auf dem Inzidenzdichteverhältnis (IDR) abzuschätzen. Seien und die Anzahl der ermittelten geimpften und nicht geimpften Fälle und und die Anzahl der geimpften und nicht geimpften Kontrollfälle, die aus der Referenzpopulation stammen. In diesem Fall lässt sich zeigen, dass[13]

.

Eine alternative Errechnung ergibt sich aus dem Anteil der Personen in der Placebogruppe einer Impfstoffstudie, die nicht krank geworden wären, wenn sie den Impfstoff erhalten hätten.[14]

Unterschiede zwischen Impfstoff-Wirksamkeitsstudien und Impfstoff-Effektivitätsstudien[Bearbeiten | Quelltext bearbeiten]

Der Impfeffekt (Impfstoffwirksamkeit) bezieht sich auf den Impfschutz, der durch randomisierte kontrollierte Studien unter optimalen Bedingungen ermittelt wird, bei denen die Lagerung und Verabreichung des Impfstoffs überwacht wird und die Teilnehmer für gewöhnlich gesund sind. Die Impfstoffeffektivität bezieht sich auf den Impfstoffschutz, der in Beobachtungsstudien an Personen mit Grunderkrankungen gemessen wurde, denen von verschiedenen Gesundheitsdienstleistern unter realen Bedingungen Impfstoffe verabreicht wurden.[15]

Der Impfeffekt zeigt, wie wirksam der Impfstoff unter idealen Umständen und bei hundertprozentiger Impfstoffaufnahme sein kann. Dagegen misst die Impfstoffeffektivität, wie gut ein Impfstoff funktioniert, wenn er unter Routinebedingungen in der Gemeinschaft angewendet wird. Wenn die Impfstoff-Wirksamkeitsstudie auf einer Population basiert, die sich in einer bestimmten kontrollierten Umgebung befindet, wird die Impfstoff-Wirksamkeitsstudie effektiver. Wenn sich die Kriterien ändern würden, z. B. wenn sie auf einer größeren Population basieren würden, die nicht so eingeschränkt ist und sich in einer natürlicheren Umgebung befindet, entspräche dies einer Impfstoff-Effektivitätsstudie. Was Impfstoff-Wirksamkeitsstudien anwendbar macht, ist, dass sie auch die Befallsrate sowie eine Nachverfolgung des Impfstatus anzeigen. Impfstoff-Effektivitätsstudien lassen sich angesichts des Zulassens von Umgebungsunterschieden viel leichter nachverfolgen als Impfstoff-Wirksamkeitsstudien.

Die Vorteile von Impfstoff-Wirksamkeitsstudien ist die mögliche Kontrolle von Störfaktoren mittels Randomisierung (Zufallszuteilung), sowie eine prospektive, aktive Überwachung der Befallsraten und eine sorgfältige Nachverfolgung des Impfstatus für eine Studienpopulation. Die Hauptnachteile von Impfstoff-Wirksamkeitsstudien sind ihre hohe Komplexität und die Kosten ihrer Durchführung, insbesondere bei relativ seltenen Infektionsergebnissen von Krankheiten, bei denen es erforderlich ist den Stichprobenumfang zu erhöhen, um eine klinisch relevante Trennschärfe zu erzielen.

Impfstoffwirksamkeit bei einem SARS-CoV-2-Impfstoff[Bearbeiten | Quelltext bearbeiten]

Hypothetische Szenarien zur Impfstoffwirksamkeit zeigten, dass ein Impfstoff mit einer Wirksamkeit von mindestens 70 % ausreichend gewesen wäre, um die Ausbreitung von COVID-19 in Südafrika einzudämmen.[16] Laut US-Experte Anthony Fauci könnte die Impfstoffwirksamkeit bei einem SARS-CoV-2-Impfstoff letztendlich nur 50–60 % betragen.[17]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Wolfgang Kiehl: Infektionsschutz und Infektionsepidemiologie. Fachwörter – Definitionen – Interpretationen. Hrsg.: Robert Koch-Institut, Berlin 2015, ISBN 978-3-89606-258-1, S. 64, Stichwort Impfstoffwirksamkeit
  2. Matthias Egger, Oliver Razum et al.: Public health kompakt. Walter de Gruyter, (2017), S. 473.
  3. John M. Last: A Dictionary of Epidemiology., 4. Auflage, 2001 International Epidemiological Association, Oxford UP 2001, S. 184. Stichwort: vaccine efficacy.
  4. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2.
  5. Linda Fischer, Theresa Palm und Florian Schumann: Kein Impfstoff zweiter Klasse. In: Zeit online. 16. Februar 2021, abgerufen am 17. Februar 2021.
  6. Ständige Impfkommission: Neuerungen in den aktuellen Empfehlungen der Ständigen Impfkommission (STIKO) am RKI vom August 2013. Hrsg.: Robert Koch-Institut, Berlin 2013, S. 353.
  7. Major Greenwood und George Udny Yule: The statistics of anti-typhoid and anti-cholera inoculations, and the interpretation of such statistics in general. (1915), 113–194.
  8. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 198
  9. Matthias Egger, Oliver Razum et al.: Public health kompakt. Walter de Gruyter, (2017), S. 442.
  10. Matthias Egger, Oliver Razum et al.: Public health kompakt. Walter de Gruyter, (2017), S. 473.
  11. Wolfgang Kiehl: Infektionsschutz und Infektionsepidemiologie. Fachwörter – Definitionen – Interpretationen. Hrsg.: Robert Koch-Institut, Berlin 2015, ISBN 978-3-89606-258-1, S. 64, Stichwort Impfstoffwirksamkeit
  12. Lothar Sachs, Jürgen Hedderich: Angewandte Statistik: Methodensammlung mit R. 8., überarb. und erg. Auflage. Springer Spektrum, Berlin/ Heidelberg 2018, ISBN 978-3-662-56657-2, S. 199
  13. Halloran, M. Elizabeth, et al.: Direct and indirect effects in vaccine efficacy and effectiveness. American journal of epidemiology (1991), S. 325
  14. John M. Last: A Dictionary of Epidemiology., 4. Auflage, 2001 International Epidemiological Association, Oxford UP 2001, S. 184. Stichwort: vaccine efficacy.
  15. National Center for Immunization and Respiratory Diseases: How do vaccine effectiveness studies differ from vaccine efficacy studies? (2011), abgerufen am 23. März 2020.
  16. Zindoga Mukandavire et al.: Quantifying early COVID-19 outbreak transmission in South Africa and exploring vaccine efficacy scenarios. (2011), PLOS ONE (2020). S. 5
  17. Fauci: COVID-19 vaccine efficacy may be only 50-60%., 8. August 2020, abgerufen am 12. September 2020.