Implizites Euler-Verfahren

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Das implizite Euler-Verfahren (nach Leonhard Euler) (auch Rückwärts-Euler-Verfahren) ist ein numerisches Verfahren zur Lösung von Anfangswertproblemen. Es ist ein implizites Verfahren, das heißt, in jedem Schritt muss eine – im Allgemeinen nichtlineare – Gleichung gelöst werden.

Das Verfahren[Bearbeiten]

Zur numerischen Lösung des Anfangswertproblems:

 \dot{x}=f(t,x), \quad \quad x(t_0)=x_0

für eine gewöhnliche Differentialgleichung wähle man eine Diskretisierungsschrittweite  h>0 , betrachte die diskreten Zeitpunkte

 t_k=t_0+kh, \quad \quad k=1,2,\dots

und berechne die iterierten Werte

 x_{k+1}=x_k+hf(t_{k+1},x_{k+1}) \quad,\quad k=0,1,\dots

Der Wert f(t_{k+1},x_{k+1}) ist hierbei nicht explizit gegeben, sondern nur implizit. Zu seiner Berechnung muss also in jedem Iterationsschritt ein (je nach Art der rechten Seite f) lineares oder nichtlineares Gleichungssystem gelöst werden.

Die berechneten Werte  x_k stellen dann Approximationen an die tatsächlichen Werte  x(t_k) der exakten Lösung des Anfangswertproblems dar. Je kleiner man die Schrittweite  h wählt, desto mehr Rechenarbeit hat man, aber desto besser werden auch die approximierten Werte.

Wird ein Verfahren über  x_{k+1}=x_k+hf(t_{k},x_{k}) definiert, erhält man das explizite Euler-Verfahren.

Eigenschaften[Bearbeiten]

Das implizite Euler-Verfahren hat Konsistenz- und Konvergenzordnung 1. Es ist A-stabil, sein Stabilitätsgebiet enthält also die komplette linke Halbebene der komplexen Zahlenebene. Es gibt damit für das implizite Euler-Verfahren keine Einschränkungen an die Zeitschritte aufgrund von Stabilitätseinschränkungen, was den Zwang des Lösens von Gleichungssystemen in jedem Schritt wettmacht. Aufgrund der geringen Ordnung ist es damit besonders für Probleme interessant, bei denen die Iteration in einen stabilen Endzustand hineinläuft und die Genauigkeit der Zwischenergebnisse nicht interessant ist.

Literatur[Bearbeiten]

  • E. Hairer, S.P. Norsett, G. Wanner: Solving Ordinary Differential Equations I, Springer Verlag
  • M. Hermann: Numerik gewöhnlicher Differentialgleichungen, Anfangs- und Randwertprobleme, Oldenbourg Verlag, München und Wien, 2004, ISBN 3-486-27606-9