Injektive Auflösung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Im mathematischen Gebiet der Kategorientheorie und der homologischen Algebra ist eine injektive Auflösung eine lange exakte Sequenz aus injektiven Objekten, die mit einem gegebenen Objekt beginnt.

Definition[Bearbeiten | Quelltext bearbeiten]

Formal sei eine abelsche Kategorie und ein Objekt aus . Dann heißt eine lange exakte Sequenz der Form

injektive Auflösung von , wenn sämtliche injektiv sind.[1]

Existenz[Bearbeiten | Quelltext bearbeiten]

Ist in der abelschen Kategorie jedes Objekt Unterobjekt eines injektiven Objektes, d. h. gibt es zu jedem Objekt einen Monomorphismus , wobei injektiv ist, so sagt man auch, besitze genügend viele injektive Objekte. Ein wichtiges Beispiel solcher Kategorien ist die Kategorie der Links-Moduln über einem Ring.

Unter diesen Bedingungen gibt es auch zu jedem Objekt eine injektive Auflösung. Zunächst existiert nämlich nach Voraussetzung ein Monomorphismus , dann weiter ein Monomorphismus und dann per Induktion jeweils weiter .

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Ist

eine injektive Auflösung und

eine exakte Sequenz, so lässt sich jeder -Homomorphismus (nicht notwendigerweise eindeutig) zu einem kommutativen Diagramm

ergänzen. Eine wichtige Folgerung aus dieser Eigenschaft ist, dass je zwei injektive Auflösungen eines Objektes vom selben Homotopietyp sind.[2]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. P. J. Hilton: Lectures in Homological Algebra, American Mathematical Society (1971), ISBN 0821816578, Definition 2.6
  2. Peter Hilton, Urs Stammbach: A course in homological algebra, 1. Auflage 1970, ISBN 3-540-90032-2, Kapitel IV, Theorem 4.4 und Satz 4.5