Integralsinus

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Verlauf des Integralsinus im Bereich 0 ≤ x ≤ 8π

Der Integralsinus ist ein Begriff aus der Mathematik und bezeichnet eine durch ein Integral gegebene Funktion. Joseph Liouville (1809–1882) bewies, dass der Kardinalsinus nicht elementar integrierbar ist.[1][2][3][4]

Der Integralsinus ist definiert als das Integral der Sinc-Funktion:

.[5]

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Im Grenzübergang kann das Integral ausgewertet werden. Es gilt:
gilt mit der Integralexponentialfunktion

Eng verwandt ist der Integralcosinus Ci(x), der zusammen mit dem Integralsinus Si(x) in parametrischer Darstellung eine Klothoide bildet.

Spezielle Werte[Bearbeiten | Quelltext bearbeiten]

Wilbraham–Gibbs-Konstante[6]

Verwandte Grenzwerte[Bearbeiten | Quelltext bearbeiten]

 

 

 

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Horst Nasert: Über den allgemeinen Integralsinus und Integralkosinus.
  • Erwin O. Kreyszig (Referent: Alwin [Oswald] Walther; Korreferent: Curt [Otto Walther] Schmieden): Über den allgemeinen Integralsinus . Auszug aus Inauguraldissertation, Institut für Praktische Mathematik der Technischen Hochschule Darmstadt.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. J. Liouville: „Mémoire. Sur la classification des Transcendantes et sur l’impossibilité d’exprimer les racines des certaines équations en fonction finie explicite des coefficients. Part 1“. Journal de Mathématiques Pures et Appliquées, 2, 56–105, 1837.
  2. J. Liouville: „Suite du Mémoire. Sur la classification des Transcendantes et sur l’impossibilité d’exprimer les racines des certaines équations en fonction finie explicite des coefficients. Part 2“. Journal de Mathématiques Pures et Appliquées, 3, 523–547, 1838.
  3. J. Liouville: „Mémoire. Sur l’integration d’une classe d’Équations différentielles du second ordre en quantités finies explicites“. Journal de Mathématiques Pures et Appliquées, 4, 423–456, 1839.
  4. Joseph (Fels) Ritt: Integration in Finite Terms: Liouville’s Theory of Elementary Methods. Columbia University Press, New York 1948.
  5. Siegfried (Johannes) Gottwald: Handbuch der Mathematik. Ein Ratgeber für Schule und Praxis, zum Selbststudium besonders geeignet. Buch und Zeit Verlagsgesellschaft, Köln 1986. ISBN 3-8166-0015-8. S. 517 (704 S.).
  6. Eric W. Weisstein: Wilbraham-Gibbs Constant. In: MathWorld (englisch).