Inzidenzstruktur

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Begriff Inzidenzstruktur bezeichnet in der Mathematik, insbesondere in der Geometrie eine Struktur aus einer Punktmenge und einer Menge von Blöcken. Zwischen diesen disjunkten Mengen ist eine Inzidenzrelation definiert. Durch diese schwachen Forderungen erweisen sich zahlreiche speziellere Strukturen (s. Beispiele) als Spezialfälle von Inzidenzstrukturen.

Beispiele für Inzidenzstrukturen:
Beispiel 1: Punkte und Geraden der euklidischen Ebene (oben)
Beispiel 2: Punkte und Kreise (mitte),
Beispiel 3: endliche Inzidenzstruktur mit Inzidenzmatrix (unten)

Definition[Bearbeiten | Quelltext bearbeiten]

Eine Inzidenzstruktur[1] ist ein Tripel von Mengen mit

und [2]

Die Elemente von heißen Punkte, die von Blöcke. Die Elemente von werden Inzidenzen oder Fahnen genannt. Für schreibt man und sagt, dass der Punkt mit dem Block inzidiert.

Erste Beispiele[Bearbeiten | Quelltext bearbeiten]

  • 1) sei die Menge der Punkte in der euklidischen Ebene und die Menge der Geraden. Die Inzidenzrelation gibt an, ob ein Punkt mit einer Gerade inzidiert, was hier bedeutet: " liegt auf ". Das Symbol bedeutet die Menge aller Punkt-Block-Paare . Da nicht jeder Punkt mit jeder Gerade inzidiert, sind die inzidenten Punkt-Gerade-Paare eine Teilmenge davon : Indiesem Fall ist die Inzidenzstruktur die reelle affine Ebene.
  • 2) sei wieder die Menge der Punkte in der euklidischen Ebene, aber ist jetzt die Menge der Kreise. Die Inzidenz ist wieder durch "liegt auf" erklärt.

Diese beiden Inzidenzstrukturen unterscheiden sich offensichtlich sehr wesentlich: In der ersten ist ein Block (Gerade) durch zwei Punkte eindeutig bestimmt, in der zweiten durch drei nicht kollineare Punkte.

Weitere Beispiele[Bearbeiten | Quelltext bearbeiten]

  • 3) sei die Menge der Eckpunkte eines Quadrates und die Menge der Geraden durch je zwei dieser Punkte. Dann ist eine 12-elementige Teilmenge von . Bei endlichen Beispielen kann man die Inzidenz durch eine Matrix mit 0-1-Einträgen beschreiben (s. Bild). In diesem Fall ist die Inzidenzstruktur das Minimalmodell einer affinen Ebene.

In den Beispielen 1),2),3) kann man einen Block als die Menge der mit ihm inzidierenden Punkte auffassen. Die Inzidenzrelation ist dann die Enthaltenseinsrelation . Im folgenden Beispiel ist dies nicht möglich, da ein Punkt der Inzidenzstruktur ein Unterraum ist. In diesem Fall kann man aber die Inzidenzrelation als Teilmengenrelation auffassen.

  • 4) sei die Menge der Ursprungsgeraden im euklidischen Raum, die Menge der Ursprungsebenen. Ein Punkt inzidiere mit einem Block , falls in enthalten ist. Die Inzidenzstruktur ist in diesem Fall eine projektive Ebene.
  • 5) sei die Menge der Punkte der Einheitskugel im 3-dimensionalen euklidischen Raum, die Menge der Kreise auf der Einheitskugel und die Inzidenzrelation. Die Inzidenzstruktur ist in diesem Fall die reelle Möbius-Ebene.

Für wichtige Klassen von Inzidenzstrukturen gilt ein Dualitätsprinzip. Die endlichen Inzidenzstrukturen sind Studienobjekte in der endlichen Geometrie und damit auch in der Kombinatorik. Ihnen kann man eine endliche Menge von Parametern zuordnen, die z. B. angeben, mit wie vielen Blöcken zwei verschiedene Punkte im Durchschnitt inzidieren; eine endliche Inzidenzstruktur, bei der ein solcher Parameter nicht nur den Durchschnittswert, sondern in jedem Fall die tatsächliche Anzahl der Inzidenzen angibt, erfüllt eine Regularitätsbedingung. Nichtausgeartete Inzidenzstrukturen, die solche Regularitätsbedingen erfüllen, können durch diese typisiert werden.

Grundlegende Begriffe und Definitionen für Inzidenzstrukturen[Bearbeiten | Quelltext bearbeiten]

Isomorphismen von Inzidenzstrukturen[Bearbeiten | Quelltext bearbeiten]

Seien und Inzidenzstrukturen. Eine bijektive Abbildung heißt Isomorphismus von auf , wenn gilt:[1]

  1. f bildet Punkte auf Punkte und Blöcke auf Blöcke ab und
  2. für alle Punkte p und Blöcke B von gilt

Einfache Inzidenzstruktur[Bearbeiten | Quelltext bearbeiten]

Die Inzidenzstruktur heißt einfach, wenn für beliebige Blöcke gilt:

wenn also alle Blöcke durch die mit ihnen inzidierenden Punkte vollständig bestimmt sind. Gleichwertig dazu ist: ist einfach genau dann, wenn isomorph zu einer Inzidenzstruktur ist, wobei eine Teilmenge der Potenzmenge von ist.[1]

Dualität[Bearbeiten | Quelltext bearbeiten]

  • Zu einer Inzidenzstruktur wird die duale Inzidenzstruktur so gebildet:
Die duale Inzidenzstruktur entsteht also aus , indem man die Blöcke die Rolle der Punkte spielen lässt und umgekehrt. Natürlich gilt
  • Vertauscht man in einer Aussage A über Inzidenzstrukturen die Wörter „Punkt“ und „Block“, so erhält man die zu A duale Aussage.
  • Für eine Klasse von Inzidenzstrukturen wird mit die Klasse der dualen Inzidenzstrukturen bezeichnet.
  • Eine konkrete Inzidenzstruktur heißt zu sich selbst dual, wenn es einen Isomorphismus gibt. Mit anderen Worten: ist genau dann zu sich selbst dual, wenn das Dualitätsprinzip für die Klasse der zu isomorphen Strukturen gilt.

Notation und grundlegende Begriffe[Bearbeiten | Quelltext bearbeiten]

  • Eine Inzidenzstruktur heißt endlich, wenn ihre Punktmenge und ihre Blockmenge endlich sind.
  • Eine Inzidenzstruktur heißt ausgeartet, wenn sie einen Block enthält, für den es keine zwei Punkte gibt, die nicht mit diesem Block inzidieren, sonst heißt die Struktur nichtausgeartet. Eine Inzidenzstruktur ist also genau dann nichtausgeartet, wenn für jeden Block mindestens zwei verschiedene Punkte existieren, die nicht mit B inzidieren.
  • Ist eine Teilmenge der Punktmenge einer Inzidenzstruktur, dann wird die Menge aller Blöcke, die mit jedem Punkt dieser Teilmenge inzidiert, als notiert; ist die Inzidenzstruktur endlich, dann wird die Anzahl dieser Blöcke als notiert. Die Symbole und sind entsprechend dual als Punktmengen bzw. deren Anzahl für Mengen von Blöcken einer (endlichen) Inzidenzstruktur erklärt. Formal:
  • Aus der Definition ergibt sich, dass die Menge aller Blöcke bedeutet, wenn die leere Menge als Teilmenge der Punktmenge angesehen wird, und die Menge aller Punkte, wenn sie als Teilmenge der Blockmenge angesehen wird.

Parameter einer endlichen Inzidenzstruktur, Punkt- und Blockgrad [Bearbeiten | Quelltext bearbeiten]

Einer endlichen Inzidenzstruktur werden für die folgenden Parameter zugeordnet:

Der Parameter gibt also an, wie viele Blöcke im Durchschnitt mit i verschiedenen Punkten inzidieren und der Parameter , wie viele Punkte im Durchschnitt auf j verschiedenen Blöcken zugleich liegen. Der Parameter ist die Gesamtzahl der Punkte und die Gesamtzahl der Blöcke der endlichen Inzidenzstruktur.

Darüber hinaus wird, vor allem im Zusammenhang mit linearen Räumen, der Begriff Grad definiert:[3]

  • Der Grad eines Punktes ist die Anzahl der Blöcke, mit denen p inzidiert.
  • Der Grad eines Blockes bzw. einer Geraden ist die Anzahl der Punkte, mit denen B inzidiert.

Damit ist der Durchschnitt aller Grade von Punkten und der Durchschnitt aller Grade von Blöcken.

Regularitätsbedingungen und Typen von endlichen Inzidenzstrukturen [Bearbeiten | Quelltext bearbeiten]

Für eine endliche Inzidenzstruktur werden die folgenden Regularitätsbedingungen[4] definiert, anhand derer diese Strukturen klassifiziert werden können:

Je i verschiedene Punkte inzidieren mit genau Blöcken. Mit anderen Worten: Für alle i-elementigen Teilmengen gilt .
Je j verschiedene Blöcke inzidieren mit genau Punkten. Mit anderen Worten: Für alle j-elementigen Teilmengen gilt .
  • Eine endliche Inzidenzstruktur, die die Regularitätsbedingungen und erfüllt, aber weder die Bedingung noch die Bedingung , wird als Inzidenzstruktur vom Typ bezeichnet.
  • Eine endliche Inzidenzstruktur, die (mindestens) die Regularitätsbedingungen erfüllt, wird als taktische Konfiguration[1] (nach Moore[5]) bezeichnet. Typische Beispiele sind die verallgemeinerten Vierecke.
  • Eine endliche Inzidenzstruktur, die mit dem Parameter erfüllt, heißt Inzidenzgeometrie.

Inzidenzmatrix[Bearbeiten | Quelltext bearbeiten]

→ Der hier beschriebene Begriff Inzidenzmatrix für eine endliche Inzidenzstruktur kann als Verallgemeinerung des Begriffes Inzidenzmatrix eines ungerichteten Graphen angesehen werden.

Eine endliche Inzidenzstruktur mit Punkten und Blöcken kann auch durch eine -Matrix repräsentiert werden. Dazu nummeriert man die Punkte von bis und die Blöcke von bis durch und trägt in die Matrix die Beziehungen der Punkte zu den Blöcken ein:

Die Matrix heißt dann eine Inzidenzmatrix der endlichen Inzidenzstruktur.[6]

Natürlich liefern verschiedene Nummerierungen der Punkt- und Blockmenge im Allgemeinen verschiedene Inzidenzmatrizen. Offenbar ist jede Matrix, deren Elemente nur 0 und 1 sind, Inzidenzmatrix einer geeigneten endlichen Inzidenzstruktur und diese ist durch die Inzidenzmatrix vollständig bestimmt.

Es werden, vor allem im Zusammenhang mit Hadamard-Matrizen auch (1,-1)-Inzidenzmatrizen verwendet, bei denen die Einträge 0 in der oben beschriebenen Matrix durch -1 ersetzt werden.[7]

Ableitung einer Inzidenzstruktur[Bearbeiten | Quelltext bearbeiten]

Für eine endliche oder unendliche Inzidenzstruktur bezeichnet man für einen Punkt die nachfolgende definierte Struktur als Ableitung von nach x oder auch am Punkt x abgeleitete Inzidenzstruktur[8][9]

Die Ableitung nach x besteht also aus allen Punkten außer x als Punktmenge , den Blöcken durch x als Blockmenge mit der induzierten Inzidenz, In diesem Fall bezeichnet man als Erweiterung von . Eine Erweiterung ist im Allgemeinen (wie auch die „Aufleitung“ als Umkehrung der „Ableitung“ in anderen Teilgebieten der Mathematik) ohne zusätzliche Bedingungen durch die ursprüngliche Struktur nicht eindeutig bestimmt.

Der Begriff wird zum Beispiel benutzt, wenn aus der Nichtexistenz von Blockplänen mit bestimmten Parametern auf die gewisser größerer Blockpläne geschlossen wird.[9]

Wie sich die Ableitung auf die Parameter spezieller Inzidenzstrukturen auswirken kann, ist beispielhaft im Artikel Wittscher Blockplan, dort insbesondere im Abschnitt Inzidenzparameter der Wittschen Blockpläne dargestellt.

Beispiel

Ist die Inzidenzstruktur eine Möbius-Ebene, so ist die Ableitung in jedem Punkt eine affine Ebene und damit eine einfachere Struktur (s. Möbius-Ebene).

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Dualitätsprinzip[Bearbeiten | Quelltext bearbeiten]

  • Ist A eine Aussage, die für alle Inzidenzstrukturen einer Klasse K gilt, so gilt die duale Aussage für alle Inzidenzstrukturen aus
  • Ist für eine Klasse K von Inzidenzstrukturen , so sagt man „für K gilt das Dualitätsprinzip“. Dann ist für jede Aussage A, die für alle Inzidenzstrukturen aus K zutrifft, auch für alle diese Inzidenzstrukturen richtig.
Beispiele

Das Dualitätsprinzip gilt für die Klasse

Die beiden zuletzt genannten Klassen enthalten ausschließlich zu sich selbst duale Strukturen. Daher gilt hier das Dualitätsprinzip in seiner verschärften Form: Zu jeder Aussage, die in einer dieser Strukturen gilt, trifft die duale Aussage in derselben Struktur zu.[10]

Gegenbeispiele

Das Dualitätsprinzip gilt nicht für die Klasse

  • der Inzidenzstrukturen mit endlicher Punktmenge,
  • der einfachen Inzidenzstrukturen,
  • der ausgearteten Inzidenzstrukturen,
  • der Inzidenzstrukturen, in denen jeder Punkt mit m Blöcken und jeder Block mit n Punkten inzidiert, es sei denn, es ist ,
  • der affinen Ebenen,
  • der projektiven Ebenen der Lenz-Klasse IVa.

Beziehungen zwischen den Parametern[Bearbeiten | Quelltext bearbeiten]

Im Folgenden ist eine endliche Inzidenzstruktur. Dann gilt nach dem Prinzip der doppelten Abzählung:[11]

  • ,
  • Das Prinzip der doppelten Abzählung durch Parameter ausgedrückt lautet: .

Die folgenden beiden, zueinander dualen Gleichungen erlauben es, sämtliche Parameter einer endlichen Inzidenzstruktur zu berechnen, wenn die Anzahl der Blöcke für jeden Punkt und die Anzahl der Punkte für jeden Block bekannt sind:

  • für alle
  • für alle
  • Erfüllt die Inzidenzstruktur die Regularitätsbedingung , das heißt, gilt für jeden Block, dann vereinfacht sich die erste Formel zu
  • Erfüllt die Inzidenzstruktur die Regularitätsbedingung , das heißt, gilt für jeden Punkt, dann vereinfacht sich die zweite Formel zu

Die folgenden beiden, ebenfalls zueinander dualen Ungleichungen für beliebige endliche Inzidenzstrukturen wurden von Dembowski bewiesen:[4][12]

  • für alle
  • für alle
  • Hat die Inzidenzstruktur den Typ und ist . Dann gilt für alle nichtnegativen Zahlen i: .[13]

Regularitätsbedingungen[Bearbeiten | Quelltext bearbeiten]

  • Aus der Gültigkeit von und folgt die Gültigkeit von .
  • Aus der Gültigkeit von und folgt die Gültigkeit von .
  • Ist der Typ einer nichtausgearteten, endlichen Inzidenzstruktur, dann gilt oder oder [4]

Eigenschaften der Inzidenzstruktur anhand der Inzidenzmatrix[Bearbeiten | Quelltext bearbeiten]

  • Sind endliche Inzidenzstrukturen, die durch die Inzidenzmatrizen bzw. beschrieben werden können, dann sind diese Inzidenzstrukturen genau dann isomorph, wenn die beiden Matrizen vom gleichen Typ sind und eine Zeilenpermutation ( ist die symmetrische Gruppe auf v Elementen) sowie eine Spaltenpermutation existieren, mit denen für gilt.
  • Insbesondere können zwei verschiedene Inzidenzmatrizen genau dann die gleiche Inzidenzstruktur beschreiben, wenn die eine durch solche Zeilen- und Spaltenpermutationen in die andere verwandelt werden kann.
  • Eine endliche Inzidenzstruktur ist genau dann einfach, wenn keine zwei Spalten einer und damit jeder Inzidenzmatrix für die Struktur miteinander übereinstimmen.
  • Eine endliche Inzidenzstruktur ist genau dann ausgeartet, wenn eine Spalte einer und damit jeder Inzidenzmatrix für die Struktur höchstens eine 0 enthält.
  • Die duale einer endlichen Inzidenzstruktur mit Inzidenzmatrix A kann durch die transponierte Inzidenzmatrix beschrieben werden.
  • Insbesondere ist eine endliche Inzidenzstruktur genau dann zu ihrer dualen Struktur isomorph, wenn ihre Inzidenz durch eine symmetrische Matrix beschrieben werden kann.

Beispiele[Bearbeiten | Quelltext bearbeiten]

  • Eine triviale Rang 2-Geometrie (im Sinne der Buekenhout-Tits-Geometrie) besteht aus einer nichtleeren Punkt- und Blockmenge , mit der Inzidenzrelation . Zum Beispiel ist das Residuum einer bestimmten Gerade g in einem dreidimensionalen affinen oder projektiven Raum eine solche Inzidenzstruktur: Jeder Punkt auf der Gerade g (also jeder „Punkt“ der Punktmenge ) inzidiert mit jeder Ebene durch diese Gerade (also jedem „Block“ der Blockmenge ) und umgekehrt. Diese Inzidenzstrukturen sind ausgeartet und (falls Punkt- und Blockmenge jeweils mehr als ein Element enthalten) nicht einfach. Man beachte, dass solche in geometrischen Zusammenhängen auftretenden Inzidenzstrukturen im Allgemeinen keine Inzidenzgeometrien sind.
  • Ist eine solche triviale Inzidenzstruktur endlich, dann hat sie den Typ . Ihre Parameter sind und .[14]
  • Die Inzidenzstruktur ist nach Konstruktion einfach, ihre duale Inzidenzstruktur ist es nicht, denn die Punkte 1 und 2 inzidieren mit denselben Blöcken. Eine Inzidenzmatrix lautet
  • Die Inzidenzstruktur ist nach Konstruktion einfach. Sie ist nichtausgeartet, aber die duale Inzidenzstruktur ist ausgeartet und nicht einfach. Eine Inzidenzmatrix lautet
  • Eine Inzidenzstruktur , bei der also alle Punkte mit dem einzigen Block inzidieren, ist einfach und ausgeartet. Ist die Punktmenge endlich und die Anzahl ihrer Punkte, so ist ein schwach affiner Raum und hat den Typ
  • Eine endliche projektive Ebene ist eine nichtausgeartete Inzidenzstruktur vom Typ
  • Eine nichtausgeartete, endliche Inzidenzstruktur vom Typ ist ein -Blockplan. Parameter sind dann
  • Ein Netz ist stets eine Inzidenzstruktur vom Typ . Genau dann, wenn ist, ist das Netz sogar eine affine Ebene.
  • Die Axiome eines linearen Raumes lassen sich zum Teil durch eine Regularitätsbedingung und durch Forderungen an die Parameter der Inzidenzstruktur formulieren: Die Bedingung muss mit erfüllt sein und es muss sein. Hinzu kommt die Forderung, dass für jeden Block (jede Gerade) sein muss.
  • Ein near pencil mit Punkten ist ein spezieller linearer Raum, er lässt sich als Inzidenzstruktur durch die Punktmenge und die Blockmenge mit der Enthaltenrelation als Inzidenz beschreiben (vgl. Linearer Raum (Geometrie)#Beispiele). Ein near pencil ist einfach, ausgeartet und zu seiner dualen Struktur isomorph. Er erfüllt die Regularitätsbedingungen mit den Parametern aber (außer für ) weder noch . Der near pencil mit 4 Punkten hat zum Beispiel die Inzidenzmatrix
  • Jeder ungerichtete Graph im Sinne der Graphentheorie kann als spezielle endliche Inzidenzstruktur angesehen werden, indem man die Knoten des Graphen als Punkte und die Kanten als Blöcke auffasst. Eine endliche Inzidenzstruktur ist genau dann ein ungerichteter Graph, wenn jeder Block mit genau zwei Punkten inzidiert, das heißt für eine Inzidenzmatrix: In jeder Spalte stehen genau zwei Einträge 1, sonst nur 0.

Literatur[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise und Anmerkungen[Bearbeiten | Quelltext bearbeiten]

  1. a b c d Beutelspacher (1982), Abschnitt 1.2 Inzidenzstrukturen
  2. In der Geometrie wird die Inzidenzrelation oft symmetrisch eingeführt; nach der Definition hier ist sie antisymmetrisch. Die symmetrische Inzidenz gewinnt man aus der antisymmetrischen I durch und umgekehrt: .
  3. Klaus Metsch: Linear Spaces with Few Lines. Springer, Berlin/Heidelberg/New York/London/Paris/Tokyo/Hong Kong/Barcelona/Budapest 1991, ISBN 3-540-54720-7, S. 1.
  4. a b c Dembowski (1961)
  5. Moore (1896)
  6. Beutelspacher (1982), S. 41
  7. Beth, Jungnickel, Lenz, I §9: Hadamard designs
  8. englisch: derived structure at a point x: Beth, Jungnickel, Lenz; Definition I.9.8
  9. a b Beutelspacher (1982), 4.Nichtexistenzsätze
  10. Für die desarguesschen Ebenen: Albrecht Beutelspacher, Ute Rosenbaum: Projektive Geometrie. Von den Grundlagen bis zu den Anwendungen (= Vieweg Studium: Aufbaukurs Mathematik). 2., durchgesehene und erweiterte Auflage. Vieweg, Wiesbaden 2004, ISBN 3-528-17241-X (Inhaltsverzeichnis [abgerufen am 10. August 2013]).
  11. Diese Formel beruht darauf, dass auf beiden Seiten der Gleichung die Anzahl aller Inzidenzen steht. Links sortiert nach den an der Inzidenz beteiligten Punkten und rechts nach den beteiligten Blöcken, Beutelspacher (1982), Lemma 1.2.3
  12. Beutelspacher (1982), Hauptsatz 1.2.9
  13. Beachte, dass hier - für eine ausgeartete Inzidenzstruktur - auch oder vorkommen kann, Beutelspacher (1982), Korollar 1.3.3
  14. Es muss aber im Allgemeinen nicht sein! Die Bedingung ist verletzt. Beutelspacher (1982)