Kolmogorov-Gleichung

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die Kolmogorov-Petrovsky-Piscounov-Gleichung (KPP-Gleichung nach Andrei Kolmogorow, Iwan Petrowski und N. Piscounov) oder auch Fishers-Gleichung (nach Ronald Aylmer Fisher) ist eine partielle Differentialgleichung der Form:

\partial_t u = \partial^2_x u + u - u^2

Dies ist eine semilineare parabolische Gleichung zweiter Ordnung. Sie wird verwendet, um verschiedene Vorgänge in der Natur zu modellieren, beispielsweise die Populationsdynamik oder Chemische Reaktionen.

Die Differentialgleichung besteht aus einem Diffusionsterm \partial^2_x u und einem nichtlinearen Reaktionsterm u - u^2.

Verwendet man eine ortsunabhängige Funktion f(t) = u(x,t), so erhält man die gewöhnliche Differentialgleichung

\partial_t f = f - f^2

An dieser kann man erkennen, dass mit dem Modell ein exponentielles Wachstum \partial_t f = f modelliert wird, das jedoch einen Sättigungsterm -f^2 enthält. Dieser steht z. B. bei der Populationsdynamik für die begrenzte Nahrungsversorgung oder bei chemischen Reaktionen für die Sättigung der Konzentration.

Reaktionsfronten[Bearbeiten]

Verwendet man die Gleichung zur Modellierung einer örtlich lokalisiert startenden Reaktion, so ist klar, dass sich eine Reaktionsfront ausbildet. Diese besitzt, wie man zeigen kann, eine minimale Ausbreitungsgeschwindigkeit.

Verwendet man den für Wellen üblichen Ansatz

u(x,t) = f(x - vt) = f(w)

so erhält man nach Einsetzen die gewöhnliche Differentialgleichung zweiter Ordnung

\partial_w^2 f + v\partial_w f + f - f^2 = 0

Nach Linearisierung und unter der Annahme, dass die "Konzentration" f nur Werte zwischen 0 und 1 annehmen kann, erhält man die Gleichung für die Eigenwerte

\lambda_{1,2} = \frac{-v \pm \sqrt{v^2 - 4}}{2}

Da diese für stabile Wellen reell sein müssen, muss v \geq 2 gelten.

Verallgemeinerungen[Bearbeiten]

Die Gleichung kann verallgemeinert werden zu:

\partial_t u = \partial^2_x u + (1 - u)u^m

mit einer positiven ganzen Zahl m.

Im Fall der KPP-Gleichung gilt dann m = 1.

Siehe auch[Bearbeiten]