Konvektive Koordinaten

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Auf einen Körper aufgetragene Koordinatenlinien folgen den Deformationen des Körpers

Konvektive Koordinaten sind krummlinige Koordinatensysteme auf dem euklidischen Raum , die an einen Träger gebunden sind und von allen Transformationen, die der Träger erfährt, mitgeführt werden, daher die Bezeichnung konvektiv. In der Kontinuumsmechanik ergeben sich konvektive Koordinaten auf natürliche Weise, wenn die Koordinatenlinien materielle Linien sind, die dann von allen Bewegungen und Deformationen des materiellen Körpers mittransponiert werden. Bildlich kann man sich ein Koordinatennetz auf eine Gummihaut aufgemalt denken, die dann gedehnt wird und das Koordinatennetz mitnimmt, siehe Abbildung rechts.

Praktische Bedeutung haben konvektive Koordinatensysteme in der Kinematik schlanker Strukturen (Stäbe, Balken) und dünnwandiger Strukturen (Schalen und Membranen), wo die Spannungen und Dehnungen parallel zu den Vorzugsrichtungen der Struktur interessieren. Außerdem können materielle Vorzugsrichtungen nicht isotroper Materialien, wie z. B. von Holz, in konvektiven Koordinaten beschrieben werden. In der Kinematik deformierbarer Körper bekommen die in der Kontinuumsmechanik benutzten Tensoren in konvektiven Koordinaten ausgedrückt besonders einfache Darstellungen.

Die Methode der konvektiven Koordinaten ist ein Spezialfall adaptiver Finite-Elemente-Methoden und wird wie diese in der numerischen Lösung von Advektions-Diffusions-Problemen verwendet (z. B. Schadstoffausbreitung in der Atmosphäre oder im Grundwasser).

Definition[Bearbeiten | Quelltext bearbeiten]

Konfigurationen und konvektive Koordinaten

Betrachtet wird ein deformierbarer Körper wie im Bild, der mittels Konfigurationen in einen euklidischen Vektorraum abgebildet wird. Die konvektiven Koordinaten eines materiellen Punktes werden durch die Referenzkonfiguration zugewiesen. Für jedes Partikel eines Körpers sind seine konvektiven Koordinaten gegeben durch:

Diese Zuordnung ist vom gewählten Bezugssystem des Beobachters, von der Zeit und vom physikalischen Raum unserer Anschauung unabhängig. Für den viereckigen Körper im Bild eignet sich z. B. das Einheitsquadrat als Bildbereich. ist ein-eindeutig (bijektiv), so dass auch der Benennung des Partikels dienen kann. Weil die Koordinaten an das Partikel gebunden sind, werden sie von jeder Bewegung des Partikels mitgenommen.

Tangenten- und Gradientenvektoren[Bearbeiten | Quelltext bearbeiten]

Koordinatenlinie von mit Tangentenvektor und Gradientenvektor im Punkt
Die kovarianten Tangentenvektoren und an materielle Koordinatenlinien (schwarz) in der Ausgangs- bzw. Momentankonfiguration spannen Tangentialräume (gelb) auf. Die kontravarianten Basisvektoren und spannen Kotangentialräume auf (nicht dargestellt)

Die Bewegungsfunktion beschreibt die Bewegung des Partikels durch den Raum unserer Anschauung und liefert uns ein Objekt unserer Anschauung, weil diese Positionen vom Körper einmal eingenommen wurden. Die Bewegung startet zu einem bestimmten Zeitpunkt , in dem sich der Körper in der Ausgangskonfiguration befindet. Die Funktion

ordnet den Koordinaten ein-eindeutig (bijektiv) einen Punkt im Raum zu, den das Partikel zum Zeitpunkt eingenommen hat. Der Vektor hat materielle Koordinaten bezüglich der Standardbasis . Wegen der Bijektivität kann

geschrieben werden. Variiert im Vektor nur eine Koordinate , dann fährt eine materielle Koordinatenlinie ab, die im allgemeinen Fall eine Kurve im Raum ist, siehe obere Abbildung rechts. Die Tangentenvektoren

an diese Kurven werden kovariante Basisvektoren des krummlinigen Koordinatensystems genannt. Die Richtung, in der sich die Koordinate am stärksten ändert, sind die Gradienten

die die kontravarianten Basisvektoren in einem materiellen Punkt darstellen. Wegen

sind die ko- und kontravarianten Basisvektoren dual zueinander und die kontravarianten Basisvektoren können aus

berechnet werden. Darin wurde das dyadische Produkt "" benutzt. In der Jacobi-Matrix sind die kovarianten Basisvektoren spaltenweise eingetragen und die kontravarianten Basisvektoren finden sich in den Zeilen der Inversen .

Die ko- und kontravarianten Basisvektoren werden nur lokal (in den Tangentialräumen) im Punkt als Basissystem für Vektor- und Tensorfelder, nicht aber für Ortsvektoren, benutzt: Die kovarianten Basisvektoren bilden eine Basis des Tangentialraumes und die kontravarianten Basisvektoren bilden eine Basis des Kotangentialraumes im Punkt , siehe untere Abbildung rechts.

Im Zuge der Bewegung entsteht in jedem Punkt und zu jedem Zeitpunkt einen Satz kovarianter Basisvektoren und kontravarianter Basisvektoren , die die Tangenten bzw. Gradienten der materiellen Koordinatenlinien im deformierten Körper zur Zeit sind. Sie sind mithin Basen der Tangentialräume bzw. .

Differentialoperatoren und Nabla-Operator[Bearbeiten | Quelltext bearbeiten]

Die Differentialoperatoren Gradient (grad), Divergenz (div) und Rotation (rot) aus der Vektoranalysis können mit dem Nabla-Operator definiert werden. In konvektiven Koordinaten hat der Nabla-Operator in der Lagrange’schen Fassung die Form:

Die Gradienten von Skalar- und Vektorfeldern werden mit ihm wie folgt dargestellt[1]:

Skalarfeld
Vektorfeld

Die Divergenzen werden aus dem Skalarprodukt mit erhalten[1]:

Vektorfeld
Tensorfeld

Die Rotation eines Vektorfeldes entsteht mit dem Kreuzprodukt:

Entsprechende Operatoren , und für Felder in der Euler’schen Fassung liefert der Nabla-Operator

Der Einheitstensor[Bearbeiten | Quelltext bearbeiten]

Der Einheitstensor bildet jeden Vektor auf sich selbst ab. Bezüglich der ko- und kontravarianten Basisvektoren lauten seine Darstellungen:

Die Skalarprodukte der kovarianten Basisvektoren

heißen kovariante Metrikkoeffizienten (des Tangentialraumes ). Entsprechend sind die Skalarprodukte der kontravarianten Basisvektoren

kontravariante Metrikkoeffizienten (des Kotangentialraumes ).

In der Euler’schen Betrachtungsweise ist entsprechend

mit den ko- und kontravarianten Metrikkoeffizienten bzw. (des Tangentialraumes bzw. Kotangentialraumes ).

Deformationsgradient[Bearbeiten | Quelltext bearbeiten]

In konvektiven Koordinaten ausgedrückt bekommt der Deformationsgradient eine besonders einfache Form. Der Deformationsgradient bildet gemäß seiner Definition die Tangentenvektoren an materielle Linien in der Ausgangskonfiguration auf die in der Momentankonfiguration ab und diese Tangentenvektoren sind gerade die kovarianten Basisvektoren bzw. . Also ist

Das ergibt sich auch aus der Ableitung der Bewegungsfunktion  :

In dieser Darstellung lässt sich auch sofort mit

die Inverse des Deformationsgradienten angeben. Der transponiert inverse Deformationensgradient bildet die kontravarianten Basisvektoren aufeinander ab:

Räumlicher Geschwindigkeitsgradient[Bearbeiten | Quelltext bearbeiten]

Die materielle Zeitableitung des Deformationsgradienten ist der materielle Geschwindigkeitsgradient

denn die Ausgangskonfiguration hängt nicht von der Zeit ab und das gilt dann auch für die Basisvektoren und . Der räumliche Geschwindigkeitsgradient bekommt in konvektiven Koordinaten die einfache Form

worin die Geschwindigkeit eines Partikels am Ort zur Zeit ist. Der räumliche Geschwindigkeitsgradient transformiert die Basisvektoren in ihre Raten:

Streck-, Verzerrungs- und Spannungstensoren[Bearbeiten | Quelltext bearbeiten]

Die folgenden Tensoren treten in der Kontinuumsmechanik auf. Ihre Darstellung in konvektiven Koordinaten ist in der Tabelle zusammengestellt.

Name Darstellung in konvektiven Koordinaten
Deformationsgradient
Rechter Cauchy-Green Tensor
Linker Cauchy-Green Tensor
Green-Lagrange-Verzerrungstensor mit
Euler-Almansi- Verzerrungstensor
Räumlicher Geschwindigkeitsgradient
Räumlicher Verzerrungsgeschwindigkeitstensor
Cauchy’scher Spannungstensor
Gewichteter Cauchy’scher Spannungstensor
Nominalspannungstensor
Erster Piola-Kirchoff’scher Spannungstensor
Zweiter Piola-Kirchoff’scher Spannungstensor

Weil der rechte Cauchy-Green Tensor , der Green-Lagrange-Verzerrungstensor und der Euler-Almansi-Tensor in ihrer (hier angegebenen) natürlichen Form mit den kovarianten Komponenten bzw. gebildet werden, werden diese Tensoren üblicher Weise als kovariante Tensoren bezeichnet. Die Spannungstensoren und sind entsprechend kontravariante Tensoren.

Objektive Zeitableitungen[Bearbeiten | Quelltext bearbeiten]

Objektive Größen sind solche, die von bewegten Beobachtern in gleicher Weise wahrgenommen werden. Die Zeitableitung von Tensoren ist im allgemeinen nicht objektiv. Die konvektiven ko- bzw. kontravarianten Oldroyd-Ableitungen objektiver Tensoren sind jedoch objektiv. Sie sind definiert über

Kovariante Oldroyd-Ableitung, z. B. von :

Kontravariante Oldroyd-Ableitung, z. B. von :

Daraus leiten sich auch die Bezeichnungen konvektiv kovariant bzw. konvektiv kontravariant der Oldroyd-Ableitungen ab. Bemerkenswert sind die übereinstimmenden Transformationseigenschaften der kovarianten Tensoren

    und   

sowie der kontravarianten Tensoren

   und   

Siehe auch den Abschnitt Objektive Zeitableitungen im Artikel zum Geschwindigkeitsgradient.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Parallelogramm in Ausgangs- und Momentankonfiguration

Ein Parallelogramm mit Grundseite und Höhe und Neigungswinkel wird zu einem flächengleichen Quadrat verformt, siehe Bild. Als Referenzkonfiguration eignet sich das Einheitsquadrat

In der Ausgangskonfiguration haben die Punkte des Parallelogramms die Koordinaten:

Die kovarianten Basisvektoren sind

Sie stehen spaltenweise in der Jacobimatrix und die kontravarianten Basisvektoren entspringen den Zeilen der Inversen der Jacobimatrix:

In der Momentankonfiguration ist :

und die konvektiven ko- und kontravarianten Basisvektoren bilden die Standardbasis

Der Deformationsgradient

ist ortsunabhängig und hat die Determinante eins, was die Erhaltung des Flächeninhalts differentialgeometrisch nachweist. Die kovarianten Metrikkoeffizienten lauten

Damit lautet der Green-Lagrange-Verzerrungstensor:

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Kontinuumsmechanik:

Mathematik:

Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. a b In der Literatur kommen auch andere Definitionen vor, siehe den Hauptartikel zum Nabla-Operator.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • H. Parisch: Festkörper Kontinuumsmechanik. Teubner, 2003, ISBN 3-519-00434-8.
  • H. Bertram: Axiomatische Einführung in die Kontinuumsmechanik. Wissenschaftsverlag, 1989, ISBN 3-411-14031-3.
  • P. Haupt: Continuum Mechanics and Theory of Materials. Springer, 2000, ISBN 978-3540661146