Eine um

zentrierte
zweidimensionale Gauß-Verteilung, mit der Kovarianzmatrix

In der Stochastik ist die Kovarianzmatrix die Verallgemeinerung der Varianz einer eindimensionalen Zufallsvariable auf eine mehrdimensionale Zufallsvariable, d. h. auf einen Zufallsvektor.
Die Elemente auf der Hauptdiagonalen der Kovarianzmatrix stellen die jeweiligen Varianzen dar, und alle übrigen Elemente Kovarianzen.
Die Kovarianzmatrix wird auch Varianz-Kovarianzmatrix oder selten Streuungsmatrix bzw. Dispersionsmatrix (lateinisch dispersio „Zerstreuung“, von dispergere „verteilen, ausbreiten, zerstreuen“) genannt und ist eine positiv semidefinite Matrix.
Sind alle Komponenten des Zufallsvektors
linear unabhängig, so ist die Kovarianzmatrix positiv definit.
Sei
ein Zufallsvektor
,
wobei
den Erwartungswert von
,
die Varianz von
und
die Kovarianz der reellen Zufallsvariablen
und
darstellt. Der Erwartungswertvektor von
ist dann gegeben durch (siehe Erwartungswert von Matrizen und Vektoren)
,
d. h. der Erwartungswert des Zufallsvektors ist der Vektor der Erwartungswerte. Eine Kovarianzmatrix für den Zufallsvektor
lässt sich wie folgt definieren:[1]

Die Kovarianzmatrix wird mit
, oder
notiert und die Kovarianzmatrix der asymptotischen Verteilung einer Zufallsvariablen mit
oder
. Die Kovarianzmatrix und der Erwartungswertvektor sind die wichtigsten Kenngrößen einer Wahrscheinlichkeitsverteilung. Sie werden bei einer Zufallsvariablen als Zusatzinformationen wie folgt angegeben:
. Die Kovarianzmatrix als Matrix aller paarweisen Kovarianzen der Elemente des Zufallsvektors enthält Informationen über seine Streuung und über Korrelationen zwischen seinen Komponenten.
Wenn keine der Zufallsvariablen
degeneriert ist (d. h. wenn keine von ihnen eine Varianz von Null aufweist) und kein exakter linearer Zusammenhang zwischen den
vorliegt, dann ist die Kovarianzmatrix positiv definit.[2] Man spricht außerdem von einer skalaren Kovarianzmatrix, wenn alle Außerdiagonaleinträge der Matrix Null sind und die Diagonalelemente dieselbe positive Konstante darstellen.[3]
- Für
gilt:
. Somit enthält die Kovarianzmatrix auf der Hauptdiagonalen die Varianzen der einzelnen Komponenten des Zufallsvektors. Alle Elemente auf der Hauptdiagonalen sind daher nichtnegativ.
- Eine reelle Kovarianzmatrix ist symmetrisch, da die Kovarianz zweier Zufallsvariablen symmetrisch ist.
- Die Kovarianzmatrix ist positiv semidefinit: Aufgrund der Symmetrie ist jede Kovarianzmatrix mittels Hauptachsentransformation diagonalisierbar, wobei die Diagonalmatrix wieder eine Kovarianzmatrix ist. Da auf der Diagonale nur Varianzen stehen, ist die Diagonalmatrix folglich positiv semidefinit und somit auch die ursprüngliche Kovarianzmatrix.
- Umgekehrt kann jede symmetrische positiv semidefinite
-Matrix als Kovarianzmatrix eines
-dimensionalen Zufallsvektors aufgefasst werden.
- Aufgrund der Diagonalisierbarkeit, wobei die Eigenwerte (auf der Diagonale) wegen der positiven Semidefinitheit nicht-negativ sind, können Kovarianzmatrizen als Ellipsoide dargestellt werden.
- Für alle Matrizen
gilt
.
- Für alle Vektoren
gilt
.
- Sind
und
unkorrelierte Zufallsvektoren, dann gilt
.
- Sind die Elemente
von
unkorreliert, so gilt
, d. h. die Kovarianzmatrix ist eine Diagonalmatrix.
- Man erhält mit der Diagonalmatrix
die Kovarianzmatrix durch die Beziehung
, wobei
die Korrelationsmatrix in der Grundgesamtheit darstellt
- Sind die Zufallsvariablen standardisiert, so enthält die Kovarianzmatrix gerade die Korrelationskoeffizienten und man erhält die Korrelationsmatrix
- Die Inverse der Kovarianzmatrix
heißt Präzisionsmatrix oder Konzentrationsmatrix
- Die Determinante der Kovarianzmatrix
wird verallgemeinerte Varianz genannt und ist ein Maß für die Gesamtstreuung eines multivariaten Datensatzes
- Für die Spur der Kovarianzmatrix gilt


Ist
der Erwartungswertvektor, so lässt sich mit dem Verschiebungssatz von Steiner angewandt auf mehrdimensionale Zufallsvariablen zeigen, dass
.
Hierbei sind Erwartungswerte von Vektoren und Matrizen komponentenweise zu verstehen.
Ein Zufallsvektor, der einer gegebenen Kovarianzmatrix gehorchen und den Erwartungswert
haben soll, kann wie folgt simuliert werden:
zunächst ist die Kovarianzmatrix zu zerlegen (z. B. mit der Cholesky-Zerlegung):
.
Anschließend lässt sich der Zufallsvektor berechnen zu

mit einem (anderen) Zufallsvektor
mit voneinander unabhängigen standardnormalverteilten Komponenten.
Die Kovarianzmatrix zweier Vektoren lautet

mit dem Erwartungswert
des Zufallsvektors
und dem Erwartungswert
des Zufallsvektors
.
Die Effizienz bzw. Präzision eines Punktschätzers lässt sich mittels der Varianz-Kovarianzmatrix messen, da diese die Informationen über die Streuung des Zufallsvektors zwischen seinen Komponenten enthält. Im Allgemeinen gilt, dass sich die Effizienz eines Parameterschätzers anhand der „Größe“ seiner Varianz-Kovarianzmatrix messen lässt. Es gilt je „kleiner“ die Varianz-Kovarianzmatrix, desto größer die Effizienz des Schätzers. Seien
und
zwei unverzerrte
Zufallsvektoren. Wenn
ein
Zufallsvektor ist, dann ist
eine
positiv definite und symmetrische Matrix. Man kann sagen, dass
„kleiner“ ist als
in Sinne der Loewner-Halbordnung, d. h., dass
eine positiv semidefinite Matrix ist.[4]
Die Kovarianzmatrix lässt sich in der Matrix-Notation darstellen als
,
wobei
die Einsmatrix und
die Anzahl Dimensionen bezeichnet.[5]
Eine Schätzung der Korrelationsmatrix in der Grundgesamtheit
erhält man, indem man die Varianzen und Kovarianzen in der Grundgesamtheit
und
durch die empirischen Varianzen und empirischen Kovarianzen (ihre empirischen Gegenstücke)
und
ersetzt (sofern die
-Variablen Zufallsvariablen darstellen schätzen die die Parameter in der Grundgesamtheit).
Kovarianzmatrix des gewöhnlichen Kleinste-Quadrate-Schätzers[Bearbeiten | Quelltext bearbeiten]
Für die Kovarianzmatrix des gewöhnlichen Kleinste-Quadrate-Schätzers

ergibt sich nach den obigen Rechenregeln:
.
Diese Kovarianzmatrix ist unbekannt, da die Varianz der Störgrößen
unbekannt ist. Einen Schätzer für die Kovarianzmatrix
erhält man, indem man die unbekannte Störgrößenvarianz
durch den erwartungstreuen Schätzer der Störgrößenvarianz
ersetzt (siehe hierzu: Erwartungstreue Schätzung des unbekannten Varianzparameters).
Kovarianzmatrix bei scheinbar unverbundenen Regressionsgleichungen[Bearbeiten | Quelltext bearbeiten]
Bei scheinbar unverbundenen Regressionsgleichungen (englisch: seemingly unrelated regression equations, kurz SURE) des Modells
,
wobei der Fehlerterm
idiosynkratisch ist, ergibt sich die Kovarianzmatrix als

Die Kovarianzmatrix kann als Näherung an die Streuregion und die Standardabweichungsellipse dargestellt werden.
- ↑ George G. Judge, R. Carter Hill, W. Griffiths, Helmut Lütkepohl, T. C. Lee. Introduction to the Theory and Practice of Econometrics. 2. Auflage. John Wiley & Sons, New York/ Chichester/ Brisbane/ Toronto/ Singapore 1988, ISBN 0-471-62414-4, S. 43.
- ↑ George G. Judge, R. Carter Hill, W. Griffiths, Helmut Lütkepohl, T. C. Lee. Introduction to the Theory and Practice of Econometrics. 2. Auflage. John Wiley & Sons, New York/ Chichester/ Brisbane/ Toronto/ Singapore 1988, ISBN 0-471-62414-4, S. 43.
- ↑ Jeffrey Marc Wooldridge: Introductory econometrics: A modern approach. 5. Auflage. Nelson Education, 2015, S. 857.
- ↑ George G. Judge, R. Carter Hill, W. Griffiths, Helmut Lütkepohl, T. C. Lee. Introduction to the Theory and Practice of Econometrics. 2. Auflage. John Wiley & Sons, New York/ Chichester/ Brisbane/ Toronto/ Singapore 1988, ISBN 0-471-62414-4, S. 78.
- ↑ Arnold, L. O., & Owaida, M. (2020). Single-Pass Covariance Matrix Calculation on a Hybrid FPGA/CPU Platform. In EPJ Web of Conferences (Vol. 245). EDP Sciences.
Spezielle Matrizen in der Statistik