LED-Leuchtmittel

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Typische Bauform mit E27-Edison-Lampensockel
LED-Leuchtmittel mit seinen technischen Daten
Verschiedene LED-Lampen (2010)
PAR-Wirkspektrum dreier LED-Lampen zur Beleuchtung von Pflanzen, Darstellung als McCree-Kurve; die Peak­höhen sind nicht LED-generell zu deuten sondern zeigen nur die PAR der dabei verwendeten Lampen

LED-Leuchtmittel sind elektrische Lichtquellen, die zum Erzeugen des Lichts Leuchtdioden (kurz LEDs, von englisch light-emitting diodes) einsetzen.

Wie auch die Kompaktleuchtstofflampen zählen sie zu den energiesparenden Leuchtmitteln (ESL). Ihre Lebensdauer kann um ein Vielfaches höher als die herkömmlicher Glühlampen sein und sie benötigen bei gleicher Helligkeit dank höheren Wirkungsgrades weniger elektrische Leistung − sie haben also eine höhere Energieeffizienz beziehungsweise Lichtausbeute. Betrachtet über ihre gesamte Lebensdauer sind sie daher trotz höheren Anschaffungspreises wesentlich wirtschaftlicher als Glühlampen.

Bauformen[Bearbeiten | Quelltext bearbeiten]

Retrofitlampen[Bearbeiten | Quelltext bearbeiten]

Retrofitlampen mit Schraub- oder Stecksockel ersetzen konventionelle Lampen. Es gibt im Wesentlichen drei Typen.

Ersatz für ungebündelt abstrahlende Lampen[Bearbeiten | Quelltext bearbeiten]

Retrofits in der Form klassischer Glühlampen haben einen Schraubsockel für die Fassungen E14 oder E27. Es gibt auch LED-Lichtquellen mit unterschiedlichen Stecksockeln: ein- oder zweiseitig gesockelt. Sie ersetzen Glüh- und Halogenlampen.

Ersatz für Reflektorlampen[Bearbeiten | Quelltext bearbeiten]

Reflektorlampen lassen sich durch LED-Retrofitlampen austauschen. Es gibt eine große Auswahl in unterschiedlichen Lichtfarben und Abstrahlwinkeln.

Ersatz für stabförmige Leuchtstofflampen (T8, T5)[Bearbeiten | Quelltext bearbeiten]

Stabförmige LED-Leuchtmittel verbrauchen weniger Energie als herkömmliche Leuchtstofflampen, flackern nicht beim Einschalten und leuchten sofort nach dem Einschalten mit voller Kraft.[1] Weil sie im Gegensatz zu Leuchtstofflampen normalerweise einseitig abstrahlen, sind sie aus lichttechnischer Sicht nicht immer die beste Wahl.

LED-Streifen und -bänder[Bearbeiten | Quelltext bearbeiten]

LED-Streifen oder flexible LED-Module haben zum Beispiel Vorwiderstände für den Betrieb an 12 oder 24 V eingebaut. Es können spannungsstabilisierte 12-V-Netzteile verwendet werden. Die Streifen sind oft an gekennzeichneten Stellen teilbar, so dass ganzzahlige Abschnitte, bestehend beispielsweise aus drei LEDs + Vorwiderstand, beim Kürzen erhalten bleiben.[2]

LED-Module[Bearbeiten | Quelltext bearbeiten]

LED-Module sind Platinen, die mit mehreren LEDs bestückt sind. Sie können mit einer Optik und einem Kühlkörper ausgestattet sein. Zum Betrieb wird meist ein Vorschaltgerät benötigt. In LED-Leuchten sind ein oder mehrere LED-Module zur Lichterzeugung integriert.

Weitere Bauformen[Bearbeiten | Quelltext bearbeiten]

  • LED-Taschenleuchten enthalten zum Teil keinerlei Strombegrenzung oder Elektronik. Dann wird der Strom durch den Innenwiderstand der Batterie begrenzt.[3]
  • Für Hochleistungs-LED oder große Einheiten (zum Beispiel Straßenbeleuchtung) werden LED-Stromversorgungen (Baugruppen mit offener Bauform oder mit geschlossenem Gehäuse) verwendet, die Konstantstrom liefern und oft (fern)gesteuert werden können.
  • Zum Betrieb einer weißen LED (Flussspannung etwa 3,3 V) an einer einzelnen Alkali-Mangan-Zelle (1,5 V) oder einem NiMH-Akkumulator (1,2 V) werden Aufwärtswandler verwendet (z. B. in Solarleuchten).[4]

Es werden auch LED-Konstantspannungs-Netzteile angeboten. An diesen können wie an anderen üblichen Spannungsquellen nur LED-Module mit integrierter Strombegrenzung betrieben werden.

Für ein besseres Thermomanagement und damit eine längere Lebensdauer werden oft ein oder mehrere LED-Module fest in der Leuchte installiert. Es werden aber auch LED-Leuchten angeboten, bei denen das Modul durch Fachleute gewechselt werden kann. Wegen der geringen Wärmeabgabe und kleinen Bauform ermöglichen LEDs sehr schmale Leuchtendesigns.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Zwischen Anfang der 1970er-Jahre, als die ersten Leuchtdioden für Signalisierungsanwendungen auf den Markt kamen, bis Ende der 1990er-Jahre kam es zu einem exponentiellen Anstieg der Effizienz, ausgedrückt in Lumen pro Watt (lm/W) an zugeführter elektrischer Leistung. Diese Steigerung der Effizienz beschrieb Anfang der 2000er-Jahre eine Forschergruppe um Roland Haitz bei den Sandia National Laboratories, auch Haitzsches Gesetz genannt[5]: Haitz prognostizierte bis zum Jahr 2010 Lichtausbeuten mit rund 100 lm/W und im Jahr 2020 um 200 lm/W.[6] Dieser Zusammenhang der exponentiellen Steigerung der Effizienz von Leuchtdioden in diesem Zeitbereich ist auch als Haitzsches Gesetz bekannt. 2006 wurden unter Laborbedingungen Lichtausbeuten von 100 Lumen pro Watt erzielt.[7]

Schema mit Farbverlauf der in Kelvin angegebenen Farbtemperaturen
Farbverlauf der in Kelvin (K) angegebenen Farbtemperaturen von LED-Leuchtmitteln

Ab 2007 kamen erste LED-Leuchtmittel für die üblichen E27- und E14-Lampensockel auf den Markt, sogenannte LED-Retrofits. Zunächst hatten sie einen Lichtstrom von nur bis zu 300 lm, was etwa einer konventionellen 30-W-Glühlampe[8] entspricht. Neben der für viele Zwecke ungenügenden Helligkeit wurde auch die anfängliche bläuliche („kalte“) Lichtfarbe kritisiert. Seit 2010 sind LED-Leuchtmittel in den Farbtemperaturen Warmweiß (2.700 bis 3.300 Kelvin), Neutralweiß (3.300 bis 5.300 K) und Tageslichtweiß (mehr als 5.300 K) erhältlich. Seit dieser Zeit sind auch sogenannte LED-Leuchtfadenlampen am Markt erhältlich, die aus einem klaren Glaskolben bestehen und historischen Glühlampen mit Einfachwendel nachempfunden sind, jedoch aus Dutzenden einzelner LEDs bestehen. Durch die Massenfertigung sanken die Kosten für die Herstellung von LED-Leuchtmitteln. Höhere Wirkungsgrade zur Effizienzsteigerung stehen nicht mehr im Vordergrund. Mehr Bedeutung kommt der Lichtqualität – auch in Kombination mit Lichtmanagementsystemen und Human Centric Lighting – zu.

Aufbau[Bearbeiten | Quelltext bearbeiten]

Der Chip erzeugt das Licht. Er baut sich aus mehreren Halbleiterschichten (epitaxy layer) und Anschlusselementen auf. In der aktiven Schicht wird beim Betrieb der Diode über Gleichspannung Licht einer Wellenlänge (blaues Licht bei weißen LEDs) erzeugt. Elektronen und Löcher rekombinieren im Halbleiter. Die Elektrolumineszenz macht aus elektrischer Energie elektromagnetische Energie, also Licht. Üblicherweise beinhaltet ein Package neben dem Chip das Gehäuse, elektrische Kontakte und die Konversionsschicht (Leuchtstoff). Dieses Package wird zusammen mit dem Chip „LED“ genannt. Das Package umfasst auch Funktionen wie Schutzschaltungen, optische Linsen oder Elemente zur Wärmeabfuhr.[9]

Binning[Bearbeiten | Quelltext bearbeiten]

Bedingt durch den Herstellungsprozess können LEDs eines Typs und Herstellers Farbunterschiede im direkten Vergleich aufweisen. Generell geben alle LED-Hersteller Toleranzen an. Das Einteilen in verschieden fein abgestufte Klassen wird als „Binning“ bezeichnet. Bei weißen LEDs umfasst dieses hauptsächlich den Lichtstrom oder die Lichtstärke, die Spannung sowie den Farbort bei Nennstrom. Auch farbige LEDs werden mit selektierten spektralen Toleranzen angeboten. Informationen darüber, welchem „Bin“ (Selektionsgrad) welche Eigenschaften zugewiesen sind, kann man den Datenblättern der Hersteller entnehmen.[10]

Integrierte Stromversorgung[Bearbeiten | Quelltext bearbeiten]

Zerlegtes Exemplar mit Versorgungsplatine, Kühlkörper und Edisonsockel
Leiterplatte mit miniaturisiertem Schaltnetzteil aus einem LED-Lampensockel
Stromlaufplan einer 6-Watt-LED-Lampe[11] mit Abwärtswandler

Zusätzlich zu den Leuchtdioden ist das im Lampengehäuse eingebaute Stromversorgungsmodul fester Bestandteil von LED-Leuchtmitteln. Das Vorschaltgerät[12] erzeugt aus der Netzspannung den für den Betrieb der LED notwendigen stabilisierten Gleichstrom mit deutlich niedrigerer Gleichspannung als die Netzspannung.

Dimmen[Bearbeiten | Quelltext bearbeiten]

Nicht dimmbare Lichtquellen[Bearbeiten | Quelltext bearbeiten]

Bei meist kostengünstigen LED-Leuchtmitteln wird ein Kondensatornetzteil in den Lampensockel integriert. Der Nachteil ist, dass Netzspannungsschwankungen zu Helligkeitsschwankungen führen. Die Netzstromaufnahme ist nicht sinusförmig, sondern verzerrt. Dimmbarkeit ist nicht mit Phasenanschnittdimmern und schlecht mit Phasenabschnittdimmern möglich.

Es gibt auch analoge Konstantstromquellenschaltungen in den LED-Leuchtmitteln.[13] Der dazu beispielsweise verbaute IC PT6913[14] erreicht mit einem zusätzlichen Kondensator Flimmerfreiheit und netzspannungsunabhängige Helligkeit. Die Lösung erzeugt zwar Oberschwingungen, ansonsten aber keine Störemissionen. Die Effizienz ist prinzipiell betriebsspannungsabhängig – die Spannungsdifferenz zwischen LED-Kette und Netzspannung, multipliziert mit dem LED-Strom, wird in Wärme umgesetzt. Aber auch diese Lichtquellen sind mit Phasenab- und -anschnittdimmern nicht dimmbar.

Dimmbare Lichtquellen[Bearbeiten | Quelltext bearbeiten]

Bei qualitativ besseren LED-Leuchtmitteln und -Leuchten werden spezielle Schaltnetzteile eingesetzt. Übliche Schaltungstopologien sind Sperrwandler, Resonanzwandler und bei Leuchtmitteln insbesondere der nicht galvanisch trennende Abwärtswandler. Diese stellen oft eine stabile Helligkeit der LEDs sicher. Das Sperrwandler-Prinzip erleichtert einen Betrieb über einen weiten Bereich der Netzspannung, beispielsweise von 90 V bis 250 V. Schwankungen der Netzspannung und sogenannte Flicker werden kompensiert, was eine gleichmäßige Helligkeit unabhängig von Netzspannungsschwankungen erlaubt.

Auch der temperaturabhängige Lichtstrom der LED kann kompensiert werden. Manche der verwendeten integrierten Schaltungen erkennen den Steuerwinkel eines vorgeschalteten Dimmers (Phasenanschnitt- oder -abschnittsteuerung) und reduzieren in Abhängigkeit vom gemessenen Winkel den LED-Strom.[15]

Retrofits in Form von Leuchtstoffröhren haben in der Regel auch eine Strombegrenzung integriert. Wegen des Berührungsschutzes beim Einsetzen müssen LED-Retrofitröhren eine einseitige Stromzuführung haben – an der anderen Seite sind die Stifte, von der übrigen Schaltung isoliert, miteinander verbunden. Beim Tausch der konventionellen Röhre gegen LED-Röhren muss daher der Starter durch eine Brücke ersetzt werden. Ein konventionelles Vorschaltgerät verbleibt im Stromkreis, dessen strombegrenzende Induktivität wird nun nicht mehr benötigt. Es verursacht zwar Leistungsverluste, die aber wesentlich geringer sind als beim vorherigen Betrieb mit der Leuchtstofflampe, da die LED-Retrofit-Lampe weniger Strom benötigt. LED-Röhren in Leuchten mit elektronischen Vorschaltgeräten oder Tandemschaltungen mit einem konventionellen Vorschaltgerät zu betreiben, ist nicht ohne Umbau der Leuchte möglich. Die Vorschaltgeräte werden dabei überbrückt bzw. entfernt, was die Gefahr birgt, dass versehentlich wieder eine Leuchtstoffröhre eingesetzt wird, was zu ihrer Zerstörung führt und auch Personenschäden verursachen kann. Die Leuchten müssen daher gekennzeichnet sein, und der Ausführende ist als Errichter der Anlage voll verantwortlich auch für die Sicherheit der umgebauten Leuchte.[2]

Leistungsdaten[Bearbeiten | Quelltext bearbeiten]

Lichtausbeute[Bearbeiten | Quelltext bearbeiten]

LED-Leuchtmittel erreichen mit Stand 2016 eine Lichtausbeute von bis zu 134 lm/W. Damit sind sie mehr als 12-mal so effizient wie herkömmliche Glühlampen (6–19 lm/W), deutlich effizienter als Fluoreszenzlampen (Leuchtstoffröhren) mit ca. 89–104 lm/W und Halogenlampen (19–18 lm/W).[16] Allerdings weisen LED-Leuchtmittel eine geringere Lichtausbeute als Natriumdampflampen (SOX) auf, welche bis zu 200 lm/W erreichen, allerdings monochromatisches Licht erzeugen.

Leucht- und Stromdichte[Bearbeiten | Quelltext bearbeiten]

Die Leistung pro LED-Chip kann durch höhere Stromdichte gesteigert werden. Dadurch sinken die Kosten und es können Anwendungen, die hohe Leuchtdichten erfordern (Bündelung), erschlossen werden. Mit höherer Stromdichte sinken jedoch Wirkungsgrad und Lebensdauer. Das resultiert sowohl aus einer höheren Temperatur des LED-Chips als auch des Leuchtstoffes. Die Anforderungen an die Kühlung steigen daher in gleichem Maße. Man verwendet Chip-on-Bord-Montage (COB-LED) und Leiterplatten mit Aluminiumkern. Die Lebensdauer reicht von einigen hundert Stunden bis zu über 50.000 Stunden und mehr.[17] Beim Design muss ein Kompromiss zwischen geringen Materialkosten, Effizienz und thermischer Belastung bzw. eingeschränkter Umgebungstemperatur gefunden werden. Die Leuchtdichte erreicht oder überschreitet diejenige von Glühlampen. Der Blauanteil des Spektrums (das ist der Strahlungsanteil der anregenden blauen LED) verursacht bei längerem Blick in das direkte, nicht gestreute Licht photochemische Schädigungen der Netzhaut des Auges. Eine thermische Schädigung der Netzhaut kann derzeit ausgeschlossen werden. Nach der Norm EN 62471 sind drei Risikogruppen vorgesehen (RG1 bis 3). Bei Risikogruppe 3 ist auch bei kurzzeitiger Exposition eine Schädigung zu erwarten, diese Gruppe wird derzeit von LED noch nicht erreicht. Die Risikogruppe 2 führt bei Betrachtungsdauern zwischen 0,25 und 100 s zur Schädigung und wird von LED-Produkten erreicht. Man geht jedoch davon aus, dass ein Abwenden oder ein Lidschlussreflex stattfindet.[18]

Abstrahlwinkel[Bearbeiten | Quelltext bearbeiten]

Ein großer Abstrahlwinkel ist nicht immer sinnvoll
Ein großer Abstrahlwinkel ist nicht immer sinnvoll

LEDs sind punktförmige Lichtquellen. Sie haben prinzipiell keine annäherende Rundum-Abstrahlung wie andere Leuchtmittel, sondern strahlen mit einem Raumwinkel von < 2 π. Ein größerer Abstrahlwinkel wird mit einer Anordnung aus mehreren LEDs oder Diffusoren erreicht.

Lichtstrom[Bearbeiten | Quelltext bearbeiten]

Der Lichtstrom wird in Lumen (lm) gemessen. Er beschreibt die von der Lichtquelle in alle Richtungen abgestrahlte Leistung im sichtbaren Bereich. Für die Lichtplanung ist der Leuchtenlichtstrom entscheidend: Er berücksichtigt im Gegensatz zum Lampenlichtstrom bereits durch das Leuchtendesign bedingte Verluste.

Bei gleicher Lumenzahl ist die Helligkeit einer Lichtquelle mit geringem Abstrahlwinkel größer als bei einer mit großem Abstrahlwinkel. Eine Aussage über die tatsächliche Ausleuchtung eines Raumes kann damit nicht getroffen werden; sie wird mit der Beleuchtungsstärke in Lux angegeben. Beispiel: Die herkömmliche E27-Glühlampe verbreitet das Licht in einem Winkel von etwa 280°.[19][20] Retrofitlampen mit diesem Sockel strahlen wegen ihres Aufbaus häufig weniger Licht in Sockelrichtung ab; neuere Modelle können jedoch auch mit Glühlampen vergleichbare Abstrahlwinkel erreichen.

Lebensdauer und Degradation[Bearbeiten | Quelltext bearbeiten]

Die Lebensdauer von LEDs und anderen Leuchtmitteln wird mit der Bemessungslebensdauer (L) angegeben. Diese Lichtquellen degradieren, und ihre Helligkeit lässt nach. Die Bemessungslebensdauer beschreibt, nach welcher Zeit der Lichtstrom auf den vom Hersteller angegebenen Wert sinkt, zum Beispiel 80 % des Neuwertes als L80. Die Lebensdauer wird meist für 25 °C Umgebungstemperatur angegeben.[21] Neben der normalen Alterung gibt es Früh- und Spontanausfälle. Die häufigsten Ursachen dafür sind oft nicht bei den LEDs, sondern in der Stromversorgung oder der Konstruktion zu finden.

Die Stiftung Warentest hat in einem Langzeittest festgestellt, dass als Gut getestete LED-Lampen auch nach mehr als 30.000 Brennstunden zuverlässig funktionieren. Sie strahlen fast gleichbleibend hell, haben eine konstante Farbwiedergabe und überstehen unbeschadet rund eine Million Ein- und Ausschaltvorgänge.[22]

Vor- und Nachteile[Bearbeiten | Quelltext bearbeiten]

LED-Leuchtmittel haben folgende Vorteile gegenüber Kompaktleuchtstofflampen, Leuchtstofflampen und Hochdruck-Gasentladungslampen:

  • sofortige volle Helligkeit nach dem Einschalten, auch bei tiefen Temperaturen
  • unempfindlich gegen häufiges Aus- und Einschalten
  • höhere Lebensdauer
  • höchste Lichtausbeute aller Beleuchtungsarten
  • geringere Wärmebelastung der Leuchte aufgrund eines höheren Wirkungsgrads und damit vergleichsweise geringer Abwärme
  • teilweise besserer Farbwiedergabeindex (insbesondere gegenüber Quecksilberdampf-Hochdrucklampen und Natriumdampf-Hochdrucklampen)
  • prinzipiell (jedoch bauartabhängig) stufenlos von wenigen Prozent bis 100 % dimmbar ohne Effizienz- oder Lebensdauerverlust
  • smart steuerbar
  • gerichtetes, leicht zu lenkendes Licht
  • keine UV- und Infrarotstrahlung
  • kein Quecksilber-Gehalt
  • hohe Vibrations- und Stoßfestigkeit, weitgehend bruchsicher[23]
  • niedrigere Gesamtkosten (Investitionskosten und Stromkosten) als bei anderen Leuchtmitteln[24]

LED-Leuchtmittel haben folgende Nachteile:

  • Die photochemische Schädigung der Netzhaut durch kaltweiße LED-Lampen führte bei Versuchen an Ratten zu Makuladegeneration, was zu Blindheit führen kann.[25][26][27]
  • Die hohe Leuchtdichte insbesondere im Blauanteil des Spektrums ist auch für das menschliche Auge gefährlich[28] und muss durch die Bauart der Leuchte oder der Lampe verringert werden. Hierzu gibt es die EU-Richtlinie 2006/25/EG
  • Werden LED-Lampen mit neutral- oder tageslichtweißer Farbtemperatur im Übermaß eingesetzt, kann ihr hoher Blauanteil zur Lichtverschmutzung beitragen.[29] Warmweiße LEDs emittieren weitaus weniger Blauanteile und werden zur Vermeidung von Lichtverschmutzung empfohlen.[30]
  • Bei hohen Umgebungstemperaturen sinkt die Lichtausbeute und die Lebensdauer verkürzt sich.
  • LED-Leuchtmittel zeigen besonders häufig Lichtflimmern. Das Flimmern ist jedoch stark bauartabhängig und kann auch fast fehlen.

Entsorgung[Bearbeiten | Quelltext bearbeiten]

Defekte oder ausgediente LED-Leuchtmittel müssen in Deutschland aufgrund des ElektroG im Elektronikschrott im Rahmen des Altlampen-Recyclings entsorgt werden. Auf diese Weise kann ein Teil der verwendeten Rohstoffe zurückgewonnen werden, insbesondere Aluminium (Kühlkörper) und Kupfer (Wickelgüter). Wertvolle Inhaltsstoffe wie Indium und Seltene Erden können derzeit noch nicht ökonomisch zurückgewonnen werden.

Sicherheit[Bearbeiten | Quelltext bearbeiten]

Nicht gegen Berührung geschützte Kontakte einer Maiskolbenlampe mit E27-Sockel für 230 V

Insbesondere bei der Bauform der sogenannten Maiskolbenlampe (corn lamps), aber auch als LED-Ersatz für Halogenstäbe gelangen Leuchtmittel gelegentlich und meist über das Internet auf den Markt, bei denen die geltenden Sicherheitsvorschriften (IEC, VDE) nicht eingehalten werden, indem galvanisch nicht vom Stromnetz getrennte Kontakte berührt werden können. Beim Kauf von LED-Leuchtmitteln für den direkten Netzbetrieb sollte daher darauf geachtet werden, dass alle elektrischen Kontakte durch eine isolierende Abdeckung IEC-normgerecht gegen Berührung geschützt sind.[31][32]

Die photobiologische Sicherheit umfasst u. a. die photochemische Schädigung der Netzhaut durch kurzwellige Lichtquellen hoher Leuchtdichte. Sie kann bei LED-Leuchtmitteln gegeben sein. In einem Bericht zur Photobiologischen Sicherheit von LED aus dem Jahre 2012 überschritten alle LED im sichtbaren Bereich den Leuchtdichtewert von 10.000 cd/m2, unterhalb welchem von keinerlei Gefährdung ausgegangen werden kann.[33] Ebenfalls bereits im Jahre 2012 kam eine weiße LED auf den Markt, die eine Leuchtdichte von 48 Mcd/m2 aufwies[34]

Viele LED-Leuchtmittel tragen opale Abdeckungen, um die Leuchtdichte zu verringern, und sind daher ungefährlich. Die Risikoeinstufung erfolgt nach er Norm DIN EN 62471 (VDE 0837-471:2009-03): Photobiologische Sicherheit von Lampen und Lampensystemen (Ausgabedatum: 2009-03) in 4 Gruppen, wobei bei Risikogruppe 2, die viele Beleuchtungs-LED erreichen, eine Abwendung wegen Blendung angenommen wird, um eine Gefährdung auszuschließen.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Kapitel 3.10 LED – Light Emitting Diodes. In: Hans Rudolf Ris: Beleuchtungtechnik für Praktiker: Grundlagen, Lampen, Leuchten, Planung, Messung, VDE Verlag/Electrosuisse, 5. überarbeitete und erweitere Auflage, Berlin/Offenbach 2015, ISBN 978-3-8007-3617-1, S. 151–179.
  • Kapitel 5 Leuchtdioden (LED). In: C. H. Zieseniß, F. Lindemuth, P. Schmits: Beleuchtungstechnik für den Elektrofachmann: Lampen, Leuchten und ihre Anwendung, Hüthig, 9. völlig neu bearbeitete Auflage, München/Heidelberg 2017, ISBN 978-3-8101-0394-9, S. 65–72.
  • Kapitel 6 Lichtemittierende Dioden (LEDs). In: R. Heinz: Grundlagen der Lichterzeugung, 5. erweiterte Auflage, Highlight, Rüthen, 2014, ISBN 978-3-937873-05-3, S. 81–114
  • Das Licht, das aus dem Halbleiter kommt: Die Leuchtdiode ist Stand der Technik. In: Deutsche Bauzeitung Nr. 1–2/2015, S. 54–59.
  • Lebensdauer von LED-Produkten. In: de – das elektrohandwerk Nr. 4/2018, 93. Jahrgang, S. 36–41.
  • Deutsche Bauzeitschrift, Nr. 7/2016; enthält einen Sonderteil zur LED-Lichttechnik, S. 73–117.
  • Dennis Köhler (Hrsg.): LED 2014 – Beiträge zur Technologie. 1. Auflage. Highlight, Rüthen 2014, ISBN 978-3-937873-06-0.
  • Dennis Köhler (Hrsg.): LED 2016 – Beiträge zur Anwendung. 1. Auflage. Hüthig, Heidelberg, 2016, ISBN 978-3-8101-0417-5.
  • Die Beleuchtung mit künstlichem Licht (= licht.wissen 01). licht.de, Frankfurt 2016, ISBN 978-3-945220-03-0, online.
  • LED: Grundlagen – Applikation – Wirkung (= licht.wissen 17). licht.de, Frankfurt 2018, ISBN 978-3-945220-18-4, online.
  • Uwe Slabke: LED-Beleuchtungstechnik: Grundwissen für Planung, Auswahl und Installation, VDE Verlag, Berlin/Offenbach 2018, ISBN 978-3-8007-4451-0
  • Nona Schulte-Römer: Kapitel 6. Umrüstung oder LED-Revolution? Eine unvollendete Geschichte der LED-Beleuchtung. In: Frank Dittmann, Günther Luxbacher (Hrsg.): Geschichte der elektrischen Beleuchtung, Geschichte der Elektrotechnik Band 26, VDE Verlag, Berlin/Offenbach 2017, ISBN 978-3-8007-4355-1, S. 189–207

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: LED-Leuchtmittel – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise und Anmerkungen[Bearbeiten | Quelltext bearbeiten]

  1. Die Beleuchtung mit künstlichem Licht. In: licht.de (Hrsg.): licht.wissen. Nr. 01. Frankfurt 2016, ISBN 978-3-945220-03-0, S. 34.
  2. a b ecobility.com (Memento des Originals vom 10. November 2017 im Internet Archive) i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.ecobility.com Sicherheitshinweise für LED-Retrofit-Lampen und die Umrüstung von Leuchten der Fa. ecobility GmbH. Abgerufen am 9. Nov. 2017
  3. Information über LED-Taschenlampen. Abgerufen am 8. Januar 2017
  4. Information über LED-Aufwärtswandler PR4401/PR4402. Abgerufen am 8. Januar 2017
  5. Weiße Leuchte. elektroniknet.de, 14. April 2011, abgerufen am 20. August 2018.
  6. Roland Haitz, Fred Kish, Jeff Tsao, Jeff Nelson: The Case for a National Research Program on Semiconductor Lighting (PDF) In: Sandia Report. Optoelectronics Industry Development Association. 1999. SAND2000-1612.
  7. Die Geschichte der LED. licht.de, abgerufen am 20. August 2018.
  8. Interpolation zwischen 25 W und 40 W, Lumen-Angaben nach EG-Verordnung Nr. 244/2009 vom 18. März 2009 zur Durchführung der Richtlinie 2005/32/EG des Europäischen Parlaments und des Rates im Hinblick auf die Festlegung von Anforderungen an die umweltgerechte Gestaltung von Haushaltslampen mit ungebündeltem Licht
  9. Das Grundprinzip der LED. licht.de, abgerufen am 20. August 2018.
  10. Binning garantiert konstante Lichtqualität. licht.de, abgerufen am 20. August 2018.
  11. dianyuan.com (PDF) sowie Reverse-Engineering
  12. Das Vorschaltgerät einer LED hat Ähnlichkeit mit demjenigen einer Gasentladungslampe – es begrenzt und stabilisiert den Strom.
  13. Dominik Schuierer: Test: Retrofit Filament LED von Greens zerlegt. In: zerobrain.info. 6. Januar 2016, abgerufen am 7. Januar 2017.
  14. princeton.com.tw Datenblatt des PT9613
  15. Datenblatt dimmbarer LED-Treiber LM3445. Abgerufen am 8. Januar 2017
  16. Die Beleuchtung mit künstlichem Licht. In: licht.de (Hrsg.): licht.wissen. Nr. 01. Frankfurt 2016, ISBN 978-3-945220-03-0, S. 34.
  17. LED: Grundlagen – Applikation – Wirkung. In: licht.de (Hrsg.): licht.wissen. Nr. 17. Frankfurt 2018, ISBN 978-3-945220-18-4, S. 24.
  18. https://www.elektronikpraxis.vogel.de/vereinfachte-sicherheitsbeurteilung-von-leuchtdioden-a-383854/ Karl Schulmeister, Hendrik Härter: Vereinfachte Sicherheitsbeurteilung von Leuchtdioden in ElektronikPraxis 30. 10. 1912, abgerufen am 23. Dez. 2019
  19. Vergleich: Abstrahlwinkel einer klaren Glühlampe und der ausgewählten LED-Lampe. Abgerufen am 24. April 2018.
  20. 75W Frosted Incandescent Review. Messwerte einer matten Glühlampe. In: ledbenchmark.com. 11. Juni 2013, abgerufen am 24. April 2018 (englisch).
  21. Lebensdauer von LED Leuchten. Abgerufen am 8. Januar 2017
  22. Stiftung Warentest: So schneiden gute LED-Lampen im Langzeittest ab. In: test.de vom 30. März 2017
  23. Vorteile von LED Beleuchtung, abgerufen am 8. Januar 2017
  24. Wie teuer ist Ihre Beleuchtung? SWR, 18. Oktober 2016; abgerufen am 27. Oktober 2016.
  25. A. Krigel et al.: Light-induced retinal damage using different light sources, protocols and rat strains reveals LED phototoxicity. In: Neuroscience. Band 339, 2016, S. 296–307, doi:10.1016/j.neuroscience.2016.10.015.
  26. LED-Lampen: Schädliches Licht für die Augen. In: ndr.de. 17. September 2018, abgerufen am 26. Mai 2019.
  27. Neue Studie zeigt: So gefährlich ist LED-Licht für die Augen. In: tz.de. 24. Mai 2019, abgerufen am 26. Mai 2019.
  28. https://www.tu-ilmenau.de/fileadmin/public/lichttechnik/Publikationen/2018/LICHT2018_Schierz_Christoph_Langfassung.pdf Christoph Schierz: Blaulichtschädigung der Augen-Netzhaut – Stand der wissenschaftlichen Erkenntnisse, Publikation der TU Ilmenau 2018, abgerufen am 23. Dezember 2019
  29. Nachtlicht: Straßenlaternen mit LED haben Schattenseiten In: welt.de, 13. August 2015, abgerufen am 5. Dezember 2017.
  30. LED Practical Guide. International Dark-Sky Association, abgerufen am 5. Dezember 2017 (englisch): „Use ‚warm-white‘ or filtered LEDs (CCT < 3,000 K; S/P ratio < 1.2) to minimize blue emission.“
  31. Nicole Krottenmüller: Vorsicht beim Kauf von Lampen mit nicht abgedeckten LEDs. Bayerisches Staatsministerium für Umwelt und Verbraucherschutz, 9. Oktober 2014, online, abgerufen am 9. Juli 2016
  32. Verbraucherinfos zu LED-Beleuchtung. Abgerufen am 8. Januar 2017
  33. http://www.baua.de/de/Publikationen/Fachbeitraege/F2115.pdf?__blob=publicationFile&v=8 L. Udovičić, F. Mainusch, M. Janßen, D. Nowack, G. Ott: Photobiologische Sicherheit von Licht emittierenden Dioden (LED); 1. Auflage. Dortmund: Bundesanstalt für Arbeitsschutz und Arbeitsmedizin 2013; ISBN 978-3-88261-726-9, 195 Seiten, Seite 71, abgerufen am 23. Dez. 2019
  34. https://www.channel-e.de/nachrichten/article/weisse-multichip-led-mit-48-mcdm2-leuchtdichte.html Weiße Multichip-LED mit 48 Mcd/m² Leuchtdichte, Bericht in ChannelE vom 28.05.2013, abgerufen am 24. Dez. 2019