Lemoinepunkt

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Lemoine-Punkt L als Schnittpunkt der Symmediane (rot)

Der Lemoinepunkt eines Dreiecks, auch Lemoinescher Punkt, Grebepunkt oder Symmedianenpunkt genannt, ist ein ausgezeichneter Punkt im Dreieck. Er ist der Schnittpunkt der an den Winkelhalbierenden gespiegelten Seitenhalbierenden, der Symmedianen.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

  • Wenn wir das Dreieck mit ABC bezeichnen und den Lemoinepunkt mit L, dann sind die Abstände des Punktes L zu den Geraden BC, CA und AB proportional zu den Längen der Seiten BC, CA und AB des Dreiecks ABC.
  • Der Lemoinepunkt ist Lösung eines gelegentlich wichtigen Optimierungsproblems: Wenn wir einen Punkt P in der Ebene des Dreiecks ABC betrachten, dann ist die Summe der Quadrate der Abstände von dem Punkt P zu den Seiten BC, CA und AB genau dann minimal, wenn P mit dem Lemoinepunkt L des Dreiecks ABC übereinstimmt.
  • Der Lemoinepunkt des größeren Dreiecks, das durch die drei Ankreismittelpunkte bestimmt wird, ist der sogenannte Mittenpunkt des Dreiecks.

Koordinaten[Bearbeiten | Quelltext bearbeiten]

Lemoine-Punkt (Symmedianenpunkt, Grebe-Punkt, )
Trilineare Koordinaten
Baryzentrische Koordinaten

Geschichte[Bearbeiten | Quelltext bearbeiten]

Der Punkt ist in England und Frankreich nach dem französischen Mathematiker Émile Lemoine und in Deutschland auch nach dem deutschen Mathematiker Ernst Wilhelm Grebe benannt, die beide zu ihm publizierten. Allerdings war der Punkt bereits vor ihren Publikationen bekannt.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, ISBN 978-0-486-46237-0, S. 213, 268, 271, 303 (Erstveröffentlichung 1929 bei der Houghton Mifflin Company (Boston) unter dem Titel Modern Geometry).

Weblinks[Bearbeiten | Quelltext bearbeiten]