Leptoquark

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Leptoquarks (X- und Y-Bosonen) sind hypothetische Elementarteilchen, die gleichzeitig an Quarks und Leptonen koppeln. Sie werden in einer Reihe von Modellen jenseits des Standardmodells der Teilchenphysik postuliert, z.B. in GUT-Modellen wie dem Georgi–Glashow-Modell, konnten jedoch bislang nicht experimentell nachgewiesen werden.

Sollten Leptoquarks existieren, würde ihr Austausch die Umwandlung von Leptonen in Quarks und umgekehrt ermöglichen und so die betragsmäßige Gleichheit der Ladung von Proton und Elektron erklären. Ihre Existenz könnte auch erklären, warum es genauso viele Quarks wie Leptonen gibt, sowie viele weitere Ähnlichkeiten des Quark- und Leptonsektors.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Die zwölf Leptoquarks wurden erstmals von Jogesh Pati und Abdus Salam in einem SU(4)-Modell eingeführt, in dem die Leptonenzahl als vierte Farbladung behandelt wurde. Nach diesem Modell haben sie ganzzahligen Spin (0 oder 1) und tragen elektrische Ladung sowie Farbe:

Leptoquarks[1][2]
(el. Ladungen Q in Einheiten der Elementarladung)
Farbladung rot grün blau
Q X-Bosonen
Teilchen + 4/3
Antiteilchen - 4/3
Q Y-Bosonen
Teilchen + 1/3
Antiteilchen - 1/3

Starke Schranken an ihre Kopplungskonstantenprodukte – insbesondere bei Leptoquarks, die an links- und rechtshändige Quarks koppeln – können aus leptonischen Mesonenzerfällen (z. B. dem Pionenzerfall) abgeleitet werden.

Die Leptoquark-Lagrangefunktion enthält neben Termen, die die gleiche Form haben wie in der supersymmetrischen Lagrangefunktion, weitere, pseudoskalare Wechselwirkungen. Durch Ausschluss dieser pseudoskalaren Wechselwirkungen können aus den Schranken an Leptoquark-Wechselwirkungen die entsprechenden Schranken an R-paritätsverletzende supersymmetrische Wechselwirkungen gewonnen werden.

Einteilung[Bearbeiten | Quelltext bearbeiten]

Die Klassifikation von Buchmüller, Rückl und Wyler (BRW-Klassifikation) teilt Leptoquarks nach dem Spin (0 oder 1), der Fermionenzahl (0 oder 2), dem schwachen Isospin und der Kopplung an links- oder rechtshändige Fermionen ein.

Zerfallsmodi[Bearbeiten | Quelltext bearbeiten]

Ein X-Boson hätte folgenden Zerfallsmodus:[2]

X → u + u
X → e+ + d

wobei die beiden Zerfallsprodukte jeweils entgegengesetzte Chiralität aufweisen.

Ein Y-Boson hätte folgenden Zerfallsmodus:

Y → e+ + u
Y → d + u
Y → d + νe

wobei das erste Zerfallsprodukt jeweils linkshändig und das zweite rechtshändig wären.

Dabei bezeichnet u das Up-Quark, d das Down-Quark, e+ das Positron (Anti-Elektron) und νe das Elektron-Antineutrino. Ähnliche Zerfallsprodukte gibt es für die anderen Teilchen-Generationen.

Bei diesen Reaktionen sind weder die Leptonenzahl L noch die Baryonenzahl B erhalten (was den Protonenzerfall erlaubt), aber die Differenz BL.

Unterschiedliche Zerfallsraten des X-Bosons und seines Antiteilchens (ähnlich wie beim K-Meson) könnten die Baryogenese zu Beginn unseres Universums erklären. Man nimmt nämlich an, dass Leptoquarks nur in einer sehr kurzen Periode existiert haben, am Ende der GUT-Ära kurz nach dem Urknall. Dann zerfielen sie in Quarks und Leptonen und bildeten, den Theorien entsprechend, die Asymmetrie zwischen Materie und Antimaterie aus.

Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. Manchmal werden die X- und Y-Bosonen noch durch ihre Ladungen gekennzeichnet, dann kann man auch generell den Buchstaben X verwenden. Man spricht dann nur von X-Bosonen und meint alle Leptoquarks.
  2. a b Ta-Pei Cheng, Ling-Fong Li: Gauge Theory of Elementary Particle Physics, Oxford University Press 1984 [korrigierter Nachdruck 1988, 2000], ISBN 0-19-851961-3.

Literatur[Bearbeiten | Quelltext bearbeiten]