Limonen

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Dieser Artikel beschreibt die chemische Verbindung. Für die Zitrusfrüchte siehe unter Limone.
Strukturformel
(R)-Limonen.svg     (S)-Limonen.svg
(R)-(+)-Limonen (links) und (S)-(–)-Limonen
Allgemeines
Name Limonen
Andere Namen
  • 1-Methyl-4-prop-1-en-2-yl-cyclohexen
  • Carven
  • p-Mentha-1,8-dien
  • 1-Methyl-4-isopropenyl-1-cyclohexen
  • 1-Methyl-4-(1-methylethenyl)cyclohexen
  • 4-Isopropenyl-1-methylcylohexen
  • Dipenten
  • Kautschin
  • Cinen
  • Cajeputene
Summenformel C10H16
CAS-Nummer
  • 5989-27-5 [(D)-(+)-Limonen]
  • 5989-54-8 [(S)-(–)-Limonen]
  • 138-86-3 [Dipenten unspezifiziert]
  • 7705-14-8 [(±)-Limonen]
  • 6876-12-6 [ trans-1-Methyl-4-(methylvinyl)cyclohexen]
PubChem 440917
Kurzbeschreibung

farblose, brennbare Flüssigkeit, charakteristischer Geruch nach Zitronen[1]

Eigenschaften
Molare Masse 136,24 g·mol−1
Aggregatzustand

flüssig

Dichte

0,84 g·cm3 (α- und β-Form, 20 °C)[2]

Schmelzpunkt

−95,5 °C[1]

Siedepunkt

177,6 °C[1]

Dampfdruck

2 hPa (20 °C)[1]

Löslichkeit

wenig in Wasser[1]

Brechungsindex
  • 1,4720 [D-(+)-Limonen][2]
  • 1,4717 [L-(–)-Limonen][2]
Sicherheitshinweise
GHS-Gefahrstoffkennzeichnung aus EU-Verordnung (EG) 1272/2008 (CLP)[3], ggf. erweitert[1]
02 – Leicht-/Hochentzündlich 07 – Achtung 09 – Umweltgefährlich

Achtung

H- und P-Sätze H: 226​‐​315​‐​317​‐​410
P: 210​‐​273​‐​280​‐​302+352 [1]
EU-Gefahrstoffkennzeichnung [4] aus EU-Verordnung (EG) 1272/2008 (CLP) [5]
Reizend Umweltgefährlich
Reizend Umwelt-
gefährlich
(Xi) (N)
R- und S-Sätze R: 10​‐​38​‐​43​‐​50/53
S: (2)​‐​24​‐​37​‐​60​‐​61
MAK

D-Limonen:

  • Deutschland: 20 ml·m−3 bzw. 110 mg·m−3[1]
  • Schweiz: 7 ml·m−3 bzw. 40 mg·m−3[6]
Toxikologische Daten

4400 mg·kg−1 (LD50Ratteoral)[7]

Soweit möglich und gebräuchlich, werden SI-Einheiten verwendet. Wenn nicht anders vermerkt, gelten die angegebenen Daten bei Standardbedingungen. Brechungsindex: Na-D-Linie, 20 °C
Vorlage:Infobox Chemikalie/Summenformelsuche vorhanden

Limonen [limoˈneːn] ist ein Naturstoff aus der Gruppe der Terpene (monocyclisches Monoterpen). Es gibt zwei Enantiomere, das D-(+)-Limonen (auch als (R)-(+)-Limonen oder kurz (+)-Limonen bezeichnet) sowie das (S)-(–)-Limonen [auch als L-(–)-Limonen oder kurz (–)-Limonen bezeichnet]. Das Racemat der beiden Enantiomere wird auch Dipenten genannt.

Geschichte[Bearbeiten | Quelltext bearbeiten]

Es wurde erstmals 1878 von Gustave Bouchardat durch Erhitzen von Isopren hergestellt.

Vorkommen[Bearbeiten | Quelltext bearbeiten]

Limonen ist das in Pflanzen am häufigsten vorkommende Monoterpen. D-(+)-Limonen ist vor allem in Pomeranzenschalenöl, in Kümmelöl, in Dillöl, in Korianderöl, in Zitronenöl (ca. 65 %)[8] und in Orangenöl (meist >90 %)[9] enthalten. Es weist einen orangenartigen Geruch auf. Dagegen ist (S)-(–)-Limonen in Edeltannen- und in Pfefferminzöl enthalten und riecht nach Terpentin. Das racemische Limonen kommt unter anderem im Kienöl, im sibirischen Fichtennadelöl, Neroliöl, Muskatnussöl und Campheröl vor.

Gewinnung/Darstellung[Bearbeiten | Quelltext bearbeiten]

Limonen wird in erster Linie durch Naturstoffextraktion gewonnen. D-(+)-Limonen fällt in großen Mengen als Nebenprodukt bei der Orangensaftproduktion an.[10] (S)-(–)-Limonen wird in verhältnismäßig kleinen Mengen aus den entsprechenden Ölen extrahiert. Das racemische Limonen fällt als Nebenprodukt bei der säurekatalysierten Isomerisierung von α- und β-Pinen an.

Biosynthese[Bearbeiten | Quelltext bearbeiten]

Biosynthese aus Geranylpyrophosphat (GPP)

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Physikalische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Der spezifische Drehwinkel beträgt [α]20D +126,3° [D-Limonen] bzw. −126,3° [(S)-Limonen].

Chemische Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Limonen ist licht-, luft-, wärme-, alkali- und säureempfindlich und autoxidiert zu Carvon.

Durch zwei aufeinander folgende Reaktionen mit Sauerstoff und Kohlendioxid entsteht Polylimonencarbonat, ein Stoff mit Polystyrol-ähnlichen Eigenschaften. Es ist Ausgangsstoff zur Synthese des β-Selinen, wobei es im ersten Schritt mit Diboran reagiert und dann mit Wasserstoffperoxid oxidiert wird.

Verwendung[Bearbeiten | Quelltext bearbeiten]

Traditionell wird Limonen als preiswerter Duftstoff eingesetzt.[11] Heute wird es vorwiegend als biogenes Lösungsmittel verwendet und dient als Reiniger und Verdünnungsmittel, beispielsweise in der Lackindustrie.

Das gramnegative Bakterium Pseudomonas putida DSM 12264 vermag D-(+)-Limonen regioselektiv zur D-(+)-Perillasäure zu oxidieren, einem natürlichen Konservierungsmittel für Kosmetika.[12] Die biotechnologische Herstellung von D-(+)-Perillasäure aus D-(+)-Limonen im Labormaßstab wurde im Jahr 2010 verbessert. Der entwickelte Bioprozess stellt eine vielversprechende Option für eine industrielle Anwendung dar.[13]

Das D-(+)-Limonen wird als pflanzliches Insektizid verwendet.

Auch dient es seit neuestem als Ausgangsstoff für die Synthese von Dronabinol (synthetischem THC).[14] In neueren Prozessen dient Limonen auch als Ausgangsprodukt für Biokunststoffe.[15][16]

Biologische Bedeutung[Bearbeiten | Quelltext bearbeiten]

Beim Metabolismus des Limonens entsteht hauptsächlich Perillinsäure, Dihydroperillinsäure, Limonen-1,2-diol und Uroterpenol. Limonen wirkt reizend. Seine Oxidationsprodukte D-(–)-Carvon und mehrere Isomere des Limonenoxid, die aus Limonen an der Luft entstehen, sind allergieauslösend.[17]

Sicherheitshinweise[Bearbeiten | Quelltext bearbeiten]

Der Flammpunkt von D-(+)-Limonen liegt bei 48 °C, die Zündtemperatur bei 237 °C. Da (S)-(–)-Limonen ein Enantiomer des D-(+)-Limonens ist, gelten diese Angaben auch für das (S)-(–)-Limonen. D-(+)-Limonen wurde als für den Menschen nicht karzinogen eingestuft.[18]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. a b c d e f g h Eintrag zu Dipenten in der GESTIS-Stoffdatenbank des IFA, abgerufen am 30. September 2008 (JavaScript erforderlich).
  2. a b c R. T. O'Connor, L. A. Goldblatt: Correlation of Ultraviolet and Infrared Spectra of Terpene Hydrocarbons, in: Anal. Chem., 1954, 26, S. 1726–1737; doi:10.1021/ac60095a014.
  3. Eintrag zu Dipentene im Classification and Labelling Inventory der Europäischen Chemikalienagentur (ECHA), abgerufen am 1. Februar 2016. Hersteller bzw. Inverkehrbringer können die harmonisierte Einstufung und Kennzeichnung erweitern.
  4. Für Stoffe ist seit dem 1. Dezember 2012, für Gemische seit dem 1. Juni 2015 nur noch die GHS-Gefahrstoffkennzeichnung gültig. Die EU-Gefahrstoffkennzeichnung ist daher nur noch auf Gebinden zulässig, welche vor diesen Daten in Verkehr gebracht wurden.
  5. Eintrag aus der CLP-Verordnung zu CAS-Nr. 138-86-3 in der GESTIS-Stoffdatenbank des IFA (JavaScript erforderlich).
  6. Schweizerische Unfallversicherungsanstalt (SUVA): Grenzwerte am Arbeitsplatz 2015 – MAK-Werte, BAT-Werte, Grenzwerte für physikalische Einwirkungen, abgerufen am 2. November 2015.
  7. Eintrag zu (D)-(+)-Limonen in der ChemIDplus-Datenbank der United States National Library of Medicine (NLM).
  8. Eintrag zu Zitronenöl. In: Römpp Online. Georg Thieme Verlag, abgerufen am 15. Juni 2014.
  9. Eintrag zu Limonen. In: Römpp Online. Georg Thieme Verlag, abgerufen am 15. Juni 2014.
  10. Rosaria Ciriminna,Monica Lomeli-Rodriguez, Piera Demma Carà, Jose A. Lopez-Sanchez und Mario Pagliaro: Limonene: a versatile chemical of the bioeconomy, Chem. Comm., 2014, 50, S. 15288–15296, doi:10.1039/c4cc06147k.
  11. Juliane Daphi-Weber, Heike Raddatz, Rainer Müller: Untersuchung von Riechstoffen – Kontrollierte Düfte, S. 94–95, in Band V der Reihe HighChem hautnah – Aktuelles aus der Lebensmittelchemie (Herausgegeben von der Gesellschaft Deutscher Chemiker) 2010, ISBN 978-3-936028-64-5.
  12. Ruben Eckermann: Mit Bakterien gegen Bakterien. In: Nachrichten aus der Chemie. Band 59, 2011, S. 619–620.
    Für die biotechnologische Herstellung von Perillasäure verlieh die Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ (AiF) den Otto von Guericke-Preis 2011 an Jens Schrader vom Karl-Winnacker-Institut (heute DECHEMA-Forschungsinstitut).
  13. M. A. Mirata et al.: Integrierte Bioproduktion und selektive Aufreinigung von Perillasäure, Chemie Ingenieur Technik, 82 (2010) S. 101–109.
  14. ApSimon: "The Total Synthesis of Natural Products" Vol. 4 John Wiley & Sons, New York Chichester Brisbane Toronto, S. 233.
  15. Bähr, M.; Bitto, A.; Mühlhaupt, R.: Cyclic limonene dicarbonate as a new monomer for non-isocyanate oligo- and polyurethanes (NIPU) based upon terpenes. In: Green Chemistry 14 (1012) 1447-1454, doi:10.1039/C2GC35099H.
  16. Firdaus, M.; Meier, M.A.R.: Renewable polyamides and polyurethanes derived from limonene. In: Green Chemistry 15 (1013) 370–380, doi:10.1039/C2GC36557J.
  17. A.T. Karlberg et al. (1992): Air oxidation of d-limonene (the citrus solvent) creates potent allergens. In: Contact Dermatitis. Bd. 26, S. 332–340, PMID 1395597.
  18. Eintrag zu Limonen in der Hazardous Substances Data Bank, abgerufen am 3. März 2010.