Lineare Regression

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die lineare Regression, die einen Spezialfall des allgemeinen Konzepts der Regressionsanalyse darstellt, ist ein statistisches Verfahren, mit dem versucht wird, eine beobachtete abhängige Variable durch eine oder mehrere unabhängige Variablen zu erklären. Das Beiwort „linear“ ergibt sich dadurch, dass die abhängige Variable eine Linearkombination der Regressionskoeffizienten darstellt (aber nicht notwendigerweise der unabhängigen Variablen). Der Begriff Regression bzw. Regression zur Mitte wurde vor allem durch den Statistiker Francis Galton geprägt.

Einfache lineare Regression[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Einfache lineare Regression

Das einfache lineare Regressionsmodell geht von lediglich zwei metrischen Größen aus: einer Einflussgröße und einer Zielgröße . Durch die einfache lineare Regression wird mithilfe von zwei Parametern eine Gerade durch eine Punktwolke gelegt, sodass der lineare Zusammenhang zwischen und möglichst gut beschrieben wird. Die Gleichung der linearen Einfachregression ist gegeben durch

.

Multiple lineare Regression[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Multiple lineare Regression

Die multiple linearen Regression stellt eine Verallgemeinerung der einfachen linearen Regression dar, wobei nun K Regressoren angenommen werden, welche die abhängige Variable erklären sollen. Zusätzlich zu der Variation über die Beobachtungen wird also auch eine Variation über die Regressoren angenommen, wodurch sich ein lineares Gleichungssystem ergibt, das sich in Matrixnotation wie folgt zusammenfassen lässt:

Normal lineares Modell[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Klassisches lineares Modell

Wird zu dem bisherigen multiplen linearen Modell auch die Annahme der Normalverteiltheit der Fehlerterme getroffen, dann spricht man auch von einem klassischem linearen Modell. Die Annahme der Normalverteilung der Fehlerterme wird benötigt, um statistische Inferenz durchzuführen, d. h., sie wird benötigt, um Konfidenzintervalle und Ähnliches berechnen zu können.

mit .

Paneldatenregression[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Lineare Paneldatenmodelle

Das allgemeine lineare Paneldatenmodell lässt zu, dass der Achsenabschnitt und die Steigungsparameter zum einen über die Individuen (in Querschnittsdimension) und zum anderen über die Zeit variieren (nicht-zeitinvariant). Das allgemeine lineare Paneldatenmodell lautet:

mit der Varianz-Kovarianz-Matrix:

Hierbei ist eine skalar vorliegende abhängige Variable, ist ein -Vektor von unabhängigen Variablen, ist ein skalar vorliegender Fehlerterm. Da dieses Modell zu allgemein ist und nicht schätzbar ist, wenn es mehr Parameter als Beobachtungen gibt, müssen bezüglich der Variation von und mit und und bezüglich des Verhaltens des Fehlerterms einschränkende Annahmen getroffen werden. Diese zusätzlichen Restriktionen und die darauf aufbauenden Modelle sind Themen der linearen Paneldatenmodelle und der Paneldatenanalyse.

Generalisierte Lineare Modelle[Bearbeiten | Quelltext bearbeiten]

Lineare Modelle lassen sich dahingehend erweitern, dass keine feste Datenmatrix untersucht wird, sondern auch diese zufallsbehaftet ist. Die Untersuchungsmethoden ändern sich in diesem Fall nicht substantiell, werden aber deutlich komplizierter und damit rechenaufwendiger.

Allgemeine lineare Modelle[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Allgemeines lineares Modell

Das allgemeine lineare Modell betrachtet die Situation, bei der die abhängige Variable kein Skalar, sondern ein Vektor ist. In diesem Fall wird ebenfalls konditionierte Linearität wie beim klassischen linearen Modell angenommen, aber mit einer Matrix , die den Vektor des klassischen linearen Modells ersetzt. Multivariate Pendants zu der gewöhnlichen Methode der kleinsten Quadrate und zu der Methode der verallgemeinerten kleinsten Quadrate wurden entwickelt. Allgemeine lineare Modelle werden auch „multivariate lineare Modelle“ genannt. Diese sind aber nicht mit multiplen linearen Modellen zu verwechseln. Das allgemeine lineare Modell ist gegeben durch

.

Orthogonale Regression[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Orthogonale Regression

Die orthogonale Regression (genauer: orthogonale lineare Regression) dient zur Berechnung einer Ausgleichsgeraden für eine endliche Menge metrisch skalierter Datenpaare nach der Methode der kleinsten Quadrate.

Regularisierung der Regression[Bearbeiten | Quelltext bearbeiten]

Um ein gewünschtes Verhalten der Regression zu gewährleisten und somit eine Überanpassung an den Trainingsdatensatz zu vermeiden, gibt es die Möglichkeit, den Regressionsterm mit Penalty-Termen zu versehen, die als Nebenbedingungen auftreten.

Zu den bekanntesten Regularisierungen gehören hierbei:[1][2]

  • Die -Regularisierung (auch LASSO-Regularisierung genannt): Durch werden bevorzugt einzelne Elemente des Vektors minimiert. Die übrigen Elemente des Vektors können jedoch (betragsmäßig) große Werte annehmen. Dies begünstigt die Bildung dünnbesetzter Matrizen, was effizientere Algorithmen ermöglicht.
  • Die -Regularisierung (auch Ridge-Regularisierung genannt): Durch wird der gesamte Vektor gleichmäßig minimiert, die Matrizen sind jedoch voller.
  • Das elastische Netz: Hierbei wird durch den Ausdruck sowohl die - als auch die-Regularisierung durchgeführt.

Anwendungen der Regressionsanalyse[Bearbeiten | Quelltext bearbeiten]

Spezielle Anwendungen der Regressionsanalyse beziehen sich auch auf die Analyse von diskreten und im Wertebereich eingeschränkten abhängigen Variablen. Hierbei kann unterschieden werden nach Art der abhängigen Variablen und Art der Einschränkung des Wertebereichs. Im Folgenden werden die Regressionsmodelle, die an dieser Stelle angewandt werden können, aufgeführt. Nähere Angaben hierzu finden sich bei Frone (1997)[3] und bei Long (1997)[4].

Modelle für unterschiedliche Arten abhängiger Variablen (Generalisierte Lineare Modelle):

Modelle für unterschiedliche Arten eingeschränkter Wertebereiche:

Anwendung in der Ökonometrie[Bearbeiten | Quelltext bearbeiten]

Für quantitative Wirtschaftsanalysen im Rahmen der Regressionsanalyse, beispielsweise der Ökonometrie, sind besonders geeignet:

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Andrew Y. Ng: Feature selection, L1 vs. L2 regularization, and rotational invariance. In: Proceedings of 2004 International Conference on Machine Learning (ICML). (PDF).
  2. Hui Zou, Trevor Hastie: Regularization and Variable Selection via the Elastic Net. (PDF).
  3. M. R. Frone: Regression models for discrete and limited dependent variables. Research Methods Forum No. 2, 1997, online. (Memento vom 7. Januar 2007 im Internet Archive).
  4. J. S. Long: Regression models for categorical and limited dependent variables. Sage, Thousand Oaks, CA 1997.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Norman R. Draper, Harry Smith: Applied Regression Analysis. Wiley, New York 1998.
  • Ludwig Fahrmeir, Thomas Kneib, Stefan Lang: Regression: Modelle, Methoden und Anwendungen. Springer Verlag, Berlin / Heidelberg / New York 2007, ISBN 978-3-540-33932-8.
  • Gerhard Opfer: Numerische Mathematik für Anfänger. 2. Auflage. Vieweg Verlag, 1994.
  • Volker Oppitz, Volker Nollau: Taschenbuch Wirtschaftlichkeitsrechnung. Carl Hanser Verlag, 2003, ISBN 3-446-22463-7.
  • Volker Oppitz: Gabler Lexikon Wirtschaftlichkeitsrechnung. Gabler-Verlag, 1995, ISBN 3-409-19951-9.
  • Peter Schönfeld: Methoden der Ökonometrie. Berlin/Frankfurt 1969.
  • Dieter Urban, Jochen Mayerl: Regressionsanalyse: Theorie, Technik und Anwendung. 2. überarb. Auflage. VS Verlag, Wiesbaden 2006, ISBN 3-531-33739-4.
  • E. Zeidler (Hrsg.): Taschenbuch der Mathematik. (Bekannt als Bronstein und Semendjajew.) Stuttgart/Leipzig/Wiesbaden 2003.
  • K. Backhaus, B. Erichson, W. Plinke, R. Weiber: Multivariate Analysemethoden. Eine anwendungsorientierte Einführung. 12. Auflage. Berlin u. a. 2008.
  • W. Zucchini, A. Schlegel, O. Nenadíc, S. Sperlich: Statistik für Bachelor- und Masterstudenten. Springer Verlag, Berlin/Heidelberg 2009.
  • A. Colin Cameron, Pravin K. Trivedi: Microeconometrics. Methods and Applications. Cambridge University Press, 2005, ISBN 0521848059.
  • G. Judge, R. Carter Hill: Introduction to the Theory and Practice of Econometrics. 1998.

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wikibooks: Einführung in die Regressionsrechnung – Lern- und Lehrmaterialien
 Commons: Lineare Regression – Sammlung von Bildern, Videos und Audiodateien