Dies ist ein als lesenswert ausgezeichneter Artikel.

Linux (Kernel)

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Linux
Tux, der Linux-Pinguin
Linux 3.0.0 boot.png
Startender Systemkern (Version 3.0.0) in Debian
Entwickler Linus Torvalds u. v. m.
Lizenz(en) GPLv2 (only),[1][2] enthält verschiedene Closed Source Binärblobs[3]
Erstveröff. 17. September 1991
Akt. Version 5.4.1[4] vom 29. November 2019
(vor 7 Tagen)
Architektur(en) IA-32 (inkl. x64), Alpha AXP, SPARC, Motorola 68k, PowerPC, POWER, ARM, Hitachi SuperH, z Systems, MIPS, PA-RISC, IA-64, AVR32, Renesas H8/​300 und weitere
Sprache(n) Englisch
www.kernel.org

Linux (deutsch [ˈliːnʊks]) ist ein Betriebssystem-Kernel, der im Jahr 1991 von Linus Torvalds ursprünglich für die x86-Architektur IA-32 entwickelt und ab Version 0.12 unter der freien GNU General Public License (GPL) veröffentlicht wird.[5] Er ist heute Teil einer Vielzahl von Betriebssystemen.

Der Name Linux setzt sich zusammen aus dem Namen Linus und einem X für das als Vorbild dienende Unix. Er bezeichnet im weiteren Sinne mittlerweile nicht mehr nur den Kernel selbst, sondern übertragen davon ganze Linux-basierte Systeme und Distributionen. Dies führte zum GNU/Linux-Namensstreit.

Grundlegende Technologie[Bearbeiten | Quelltext bearbeiten]

Grob-Struktur des Linux-Kernels

Aufgaben des Kernels[Bearbeiten | Quelltext bearbeiten]

Der Kernel eines Betriebssystems bildet die hardwareabstrahierende Schicht, das heißt, er stellt der auf dieser Basis aufsetzenden Software eine einheitliche Schnittstelle (API) zur Verfügung, die unabhängig von der Rechnerarchitektur ist. Die Software kann so immer auf die Schnittstelle zugreifen und braucht die Hardware selbst, die sie nutzt, nicht genauer zu kennen. Linux ist dabei ein modularer monolithischer Kernel und zuständig für Speicherverwaltung, Prozessverwaltung, Multitasking, Lastverteilung, Sicherheitserzwingung und Eingabe/Ausgabe-Operationen auf verschiedenen Geräten.

Programmiersprache[Bearbeiten | Quelltext bearbeiten]

Linux ist fast ausschließlich in der Programmiersprache C geschrieben, wobei einige GNU-C-Erweiterungen benutzt werden. Eine Ausnahme bilden die architekturabhängigen Teile des Codes (im Verzeichnis arch innerhalb der Linux-Sourcen), wie zum Beispiel der Beginn des Systemstarts (Bootvorgang), der in Assemblersprache geschrieben ist.

Funktionsweise[Bearbeiten | Quelltext bearbeiten]

Bei einem strikt monolithischen Kernel wird der gesamte Quellcode inklusive aller Treiber in das Kernel-Image (den ausführbaren Kernel) kompiliert. Im Gegensatz dazu kann Linux Module benutzen, die während des Betriebs geladen und wieder entfernt werden können. Damit wird die Flexibilität erreicht, um unterschiedlichste Hardware ansprechen zu können, ohne sämtliche (auch nicht benötigte) Treiber und andere Systemteile im Arbeitsspeicher halten zu müssen.

Sind Teile der Hardwarespezifikationen nicht genügend offengelegt, so stützt sich Linux notfalls über spezielle VM86-Modi auch auf das BIOS des Systems, u. a. auf die Erweiterungen gemäß den Standards APM, ACPI und VESA. Um unter diesen Voraussetzungen x86-kompatible Hardware z. B. auf der DEC-Alpha-Plattform zu betreiben, werden teilweise sogar Emulatoren zur Ausführung entsprechenden ROM-Codes verwendet. Linux selbst übernimmt das System beim Bootprozess typischerweise in dem Moment, in dem der BIOS-Bootloader erfolgreich war und alle Systeminitialisierungen des BIOS abgeschlossen sind.

Der Kernel ist ein Betriebssystemkern und darf nicht als das eigentliche Betriebssystem verstanden werden. Dieses setzt sich aus dem Kernel und weiteren grundlegenden Bibliotheken und Programmen (die den Computer erst bedienbar machen) zusammen.

Siehe auch: Gerätedatei, Network Block Device, Netfilter, Netzwerk-Scheduler, Prozess-Scheduler, Linux (Betriebssystem)

Schnittstellen[Bearbeiten | Quelltext bearbeiten]

Man kann zwischen vier Schnittstellen unterscheiden, die das Zusammenwirken von entweder kernelinternen Komponenten untereinander oder von Kernel und externer Software ermöglichen. Die Stabilität der externen Programmierschnittstelle wird garantiert, das heißt, dass Quellcode grundsätzlich ohne jegliche Veränderungen portierbar ist. Die Stabilität der internen Programmierschnittstellen wird nicht garantiert, diese können zehn Jahre oder wenige Monate stabil bleiben. Da der Linux-Kernel von einigen tausend Entwicklern vorangetrieben wird, ist der eventuell entstehende Aufwand zu verschmerzen.

Die Binärschnittstelle des Kernels ist unerheblich, auf das komplette Betriebssystem kommt es an. Die Linux Standard Base (LSB) soll es ermöglichen, kommerzielle Programme unverändert zwischen Linux Betriebssystemen zu portieren. Die interne Binärschnittstelle ist nicht stabil, und es gibt keinerlei Bestrebungen dies zu ändern; dies hat zur Folge, dass ein internes Modul, welches z. B. für Linux 3.0 kompiliert worden ist, höchstwahrscheinlich nicht mit Linux-Kernel 3.1 zusammenarbeiten wird. Dies ist eine ganz bewusste Entscheidung.[6]

Architektur[Bearbeiten | Quelltext bearbeiten]

Anwenderprogramme (z.B. Textverarbeitung, Tabellenkalkulation oder Browser) User Mode
Complex Libraries (GLib, GTK+, Qt, SDL, EFL) Anwenderprogramme
Complex Libraries (GLib, kde) Simple Libraries sin, opendbm Anwenderprogramme
C-Standard-Bibliothek: glibc open, exec, sbrk, socket, fopen, calloc
Systemaufrufe TRAP, CALL, BRK, INT (je nach Hardware) Kernel Mode
Kernel (Gerätetreiber, Prozesse, Netzwerk, Dateisystem)
Hardware (Prozessor(en), Speicher, Geräte)

Linux ist ein monolithischer Kernel. Die Treiber im Kernel und die Kernel-Module laufen im privilegierten Modus (x86: Ring 0), haben also unbeschränkten Zugriff auf die Hardware. Einige wenige Module des Kernels laufen im eingeschränkten Benutzermodus (x86: Ring 3). Die Level 1 und 2 der x86-Architektur werden von Linux nicht genutzt, da sie auf vielen anderen Architekturen nicht existieren und der Kernel auf allen unterstützten Architekturen im Wesentlichen gleich funktionieren soll.

Nahezu jeder Treiber kann auch als Modul zur Verfügung stehen und vom System dann dynamisch nachgeladen werden. Ausgenommen davon sind Treiber, die für das Starten des Systems verantwortlich sind, bevor auf das Dateisystem zugegriffen werden kann. Man kann allerdings den Kernel so konfigurieren, dass ein CramFS- oder Initramfs-Dateisystem vor dem tatsächlichen Root-Dateisystem geladen wird, welches die weiteren für den Startprozess notwendigen Module enthält. Dadurch kann die Kernelgröße verringert und die Flexibilität drastisch erhöht werden.

Im System laufende Programme bekommen wiederum vom Kernel Prozessorzeit zugewiesen. Jeder dieser Prozesse erhält einen eigenen, geschützten Speicherbereich und kann nur über Systemaufrufe auf die Gerätetreiber und das Betriebssystem zugreifen. Die Prozesse laufen dabei im Benutzermodus (user mode), während der Kernel im Kernel-Modus (kernel mode) arbeitet. Die Privilegien im Benutzermodus sind sehr eingeschränkt. Abstraktion und Speicherschutz sind nahezu vollkommen, ein direkter Zugriff wird nur sehr selten und unter genau kontrollierten Bedingungen gestattet. Dies hat den Vorteil, dass kein Programm z. B. durch einen Fehler das System zum Absturz bringen kann.

Linux stellt wie sein Vorbild Unix eine vollständige Abstraktion und Virtualisierung für nahezu alle Betriebsmittel bereit (z. B. virtueller Speicher, Illusion eines eigenen Prozessors usw.).

Die Tatsache, dass Linux nicht auf einem Microkernel basiert, war Thema eines berühmten Flame Wars zwischen Linus Torvalds und Andrew S. Tanenbaum. Anfang der 1990er Jahre, als Linux entwickelt wurde, galten monolithische Kernels als obsolet (Linux war zu diesem Zeitpunkt noch rein monolithisch). Die Diskussion und Zusammenfassungen sind im Artikel Geschichte von Linux näher beschrieben.

Durch Erweiterungen wie FUSE und durch die zunehmende Verwendung von Kernel-Prozessen fließen mittlerweile auch zahlreiche Microkernel-Konzepte in Linux ein.

Portierbarkeit[Bearbeiten | Quelltext bearbeiten]

Obwohl Linus Torvalds eigentlich nicht beabsichtigt hatte, einen portierbaren Kernel zu schreiben, hat sich Linux dank des GNU Compilers GCC weitreichend in diese Richtung entwickelt. Es ist inzwischen eines der am häufigsten portierten Systeme (nur noch NetBSD läuft auf etwa gleich vielen Architekturen). Das Repertoire reicht dabei von eher selten anzutreffenden Betriebsumgebungen wie dem iPAQ-Handheld-Computer, Digitalkameras oder Großrechnern wie IBMs System z bis hin zu normalen PCs.

Obwohl die Portierung auf die S/390 ursprünglich ein vom IBM-Management nicht genehmigtes Unterfangen war (siehe auch: Skunk works), plant IBM auch die nächste IBM-Supercomputergeneration Blue Gene mit einem eigenen Linux-Port auszustatten.

Ursprünglich hatte Torvalds eine ganz andere Art von Portierbarkeit für sein System angestrebt, nämlich die Möglichkeit, freie GPL- und andere quelloffene Software leicht unter Linux kompilieren zu können. Dieses Ziel wurde bereits sehr früh erreicht und macht sicherlich einen guten Teil des Erfolges von Linux aus, da es jedem eine einfache Möglichkeit bietet, auf einem freien System freie Software laufen zu lassen.

Die ersten Architekturen, auf denen Linux lief, waren die von Linus Torvalds verwendeten Computer:[7]

  • IA-32 (x86 ab dem i386) – Linus hatte ab 1991 einen PC mit Intel-386DX-33-MHz-Prozessor, 4 MB RAM und 40 MB Festplatte.
  • Alpha – Linus arbeitete von 1994 bis 1995 an der Portierung auf die 64-Bit-Alpha-Architektur (auf einem DEC-Alpha-Rechner, den er als Leihgabe erhalten hatte).

Damit war Linux sehr früh 64-Bit-fähig (Linux 1.2 erschien 1995) und durch die Portierung auf Alpha war der Weg für weitere Portierungen frei. Zeitgleich arbeitete der Student Dave Miller ab 1993 an der Portierung auf SPARC von Sun Microsystems, einer damals weit verbreiteten Architektur. Doch lief Linux 2.0 von Mitte 1996 offiziell auf IA-32 und Alpha, konnte aber bereits SMP.

Mit Linux 2.2 vom Januar 1999 kamen folgende Ports hinzu:[7]

Mit Linux 2.4 vom Januar 2001 schließlich kamen folgende Architekturen hinzu:[7]

Trotz der unterstützten Befehlssatzarchitekturen (englisch Instruction Set Architecture, kurz ISA) ist für die Lauffähigkeit mehr nötig, sodass Linux gegenwärtig auf u. a. folgenden Plattformen und Architekturen läuft:

Binärschnittstellen der ARM-Architektur[Bearbeiten | Quelltext bearbeiten]

Linux unterstützt zwei verschiedene Binärschnittstellen für ARM-Prozessoren. Die ältere Binärschnittstelle wird mit dem Akronym OABI (old application binary interface) bezeichnet und unterstützt die Prozessorarchitekturen bis einschließlich ARMv4, während die neuere Binärschnittstelle, die mit EABI (embedded application binary interface) bezeichnet wird, die Prozessorarchitekturen ab einschließlich ARMv4 unterstützt. Der bedeutendste Unterschied der Binärschnittstellen in Bezug auf Systemleistung ist die sehr viel bessere Unterstützung von Software-emulierten Gleitkommarechnungen durch EABI.[10]

User Mode Linux[Bearbeiten | Quelltext bearbeiten]

Ein besonderer Port ist das User Mode Linux. Prinzipiell handelt es sich dabei um einen Port von Linux auf sein eigenes Systemcall-Interface. Dies ermöglicht es, einen Linux-Kernel als normalen Prozess auf einem laufenden Linux-System zu starten. Der User-Mode-Kernel greift dann nicht selbst auf die Hardware zu, sondern reicht entsprechende Anforderungen an den echten Kernel durch. Durch diese Konstellation werden „Sandkästen“ ähnlich den virtuellen Maschinen von Java oder den jails von FreeBSD möglich, in denen ein normaler Benutzer Root-Rechte haben kann, ohne dem tatsächlichen System schaden zu können.

µClinux[Bearbeiten | Quelltext bearbeiten]

µClinux ist eine Linux-Variante für Computer ohne Memory Management Unit (MMU) und kommt vorwiegend auf Mikrocontrollern und eingebetteten Systemen zum Einsatz. Seit Linux-Version 2.6 ist µClinux Teil des Linux-Projektes.

Entwicklungsprozess[Bearbeiten | Quelltext bearbeiten]

Linus Torvalds (2014)

Die Entwicklung von Linux liegt durch die GNU General Public License und durch ein sehr offenes Entwicklungsmodell nicht in der Hand von Einzelpersonen, Konzernen oder Ländern, sondern in der Hand einer weltweiten Gemeinschaft vieler Programmierer, die sich hauptsächlich über das Internet austauschen. Bei der Entwicklung kommunizieren die Entwickler fast ausschließlich über E-Mail, da Linus Torvalds behauptet, dass so die Meinungen nicht direkt aufeinander prallen. In vielen Mailinglisten, aber auch in Foren und im Usenet besteht für jedermann die Möglichkeit, die Diskussionen über den Kernel zu verfolgen, sich daran zu beteiligen und auch aktive Beiträge zur Entwicklung zu leisten. Durch diese unkomplizierte Vorgehensweise ist eine schnelle und stetige Entwicklung gewährleistet, die auch die Möglichkeit mit sich bringt, dass jeder dem Kernel Fähigkeiten zukommen lassen kann, die er benötigt.

Eingegrenzt wird dies nur durch die Kontrolle von Linus Torvalds und einigen besonders verdienten Programmierern, die das letzte Wort über die Aufnahme von Verbesserungen und Patches in die offizielle Version haben. Manche Linux-Distributoren bauen auch eigene Funktionen in den Kernel ein, die im offiziellen Kernel (noch) nicht vorhanden sind.

Änderungen der Herkunftskontrolle[Bearbeiten | Quelltext bearbeiten]

Der Entwicklungsprozess des Kernels ist wie der Kernel selbst ebenfalls immer weiterentwickelt worden. So führte der Rechtsprozess der SCO Group um angeblich illegal übertragenen Code in Linux zur Einführung eines „Linux Developer's Certificate of Origin“, das von Linus Torvalds und Andrew Morton bekanntgegeben wurde.[11] Diese Änderung griff das Problem auf, dass nach dem bis dahin gültigen Modell des Linux-Entwicklungsprozesses die Herkunft einer Erweiterung oder Verbesserung des Kernels nicht nachvollzogen werden konnte.

“These days, most of the patches in the kernel don't actually get sent directly to me. That not just wouldn't scale, but the fact is, there's a lot of subsystems I have no clue about, and thus no way of judging how good the patch is. So I end up seeing mostly the maintainers of the subsystem, and when a bug happens, what I want to see is the maintainer name, not a random developer who I don't even know if he is active any more. So at least for me, the _chain_ is actually mostly more important than the actual originator.

There is also another issue, namely the fact than when I (or anybody else, for that matter) get an emailed patch, the only thing I can see directly is the sender information, and that's the part I trust. When Andrew sends me a patch, I trust it because it comes from him – even if the original author may be somebody I don't know. So the _path_ the patch came in through actually documents that chain of trust – we all tend to know the „next hop“, but we do _not_ necessarily have direct knowledge of the full chain.

So what I'm suggesting is that we start „signing off“ on patches, to show the path it has come through, and to document that chain of trust. It also allows middle parties to edit the patch without somehow „losing“ their names – quite often the patch that reaches the final kernel is not exactly the same as the original one, as it has gone through a few layers of people.”

„Zurzeit werden die meisten Patches für den Kernel nicht direkt an mich gesandt. Das wäre einfach nicht machbar. Tatsache ist, dass es eine Menge Untersysteme gibt, mit denen ich überhaupt nicht vertraut bin und ich somit keine Möglichkeit habe zu entscheiden, wie gut der Patch ist. Deshalb läuft es meist darauf hinaus, die Pfleger (Maintainer) des Untersystemes zu treffen. Falls ein Fehler auftritt, will ich den Namen eines Pflegers und nicht irgendeines Entwicklers sehen, von dem ich nicht einmal weiß, ob er noch aktiv ist. Daher ist für mich auf jeden Fall die _Kette_ wichtiger als der tatsächliche Urheber. Auch gibt es ein anderes Problem, nämlich dass ich, falls man mir (oder irgendjemand anderem) einen Patch über E-Mail schickt, einzig die Senderinformation direkt sehen kann, und das ist der Teil, dem ich traue. Wenn Andrew mir einen Patch schickt, vertraue ich dem Patch, weil er von Andrew kommt – auch wenn der eigentliche Urheber jemand ist, den ich nicht kenne. Also belegt tatsächlich der _Weg_, den der Patch zu mir nahm, diese Kette des Vertrauens – wir alle neigen dazu, das jeweils nächste „Glied“ zu kennen, aber _nicht_ unbedingt unmittelbares Wissen über die gesamte Kette zu haben. Was ich also vorschlage ist, dass wir anfangen, Patches „abzuzeichnen“, um den Weg, den sie genommen haben, aufzuzeigen und diese Kette des Vertrauens zu dokumentieren. Das erlaubt es darüber hinaus vermittelnden Gruppen, den Patch zu verändern, ohne dass dabei der Name von jemanden „auf der Strecke bleibt“ – ziemlich oft ist die Patchversion, die letztendlich in den Kernel aufgenommen wird, nicht genau die ursprüngliche, ist sie doch durch einige Entwicklerschichten gegangen.“

Linus Torvalds: Linux-Kernel Archive,[12] 23. Mai 2004

Das Versionskontrollsystem Git[Bearbeiten | Quelltext bearbeiten]

Die Versionskontrolle des Kernels unterliegt dem Programm Git. Dies wurde speziell für den Kernel entwickelt und auf dessen Bedürfnisse hin optimiert. Es wurde im April 2005 eingeführt, nachdem sich abgezeichnet hatte, dass das alte Versionskontrollsystem BitKeeper nicht mehr lange für die Kernelentwicklung würde genutzt werden können.

Kernel-Versionen[Bearbeiten | Quelltext bearbeiten]

Auf der Website kernel.org werden alle alten und neuen Kernel-Versionen archiviert. Die dort befindlichen Referenzkernel werden auch als Vanilla-Kernel bezeichnet (von umgangssprachlich engl. vanilla für Standard bzw. ohne Extras im Vergleich zu Distributionskernels). Auf diesem bauen die Distributionskernel auf, die von den einzelnen Linux-Distributionen um weitere Funktionen ergänzt werden. Die Kernel-Version des geladenen Betriebssystems kann mit dem Befehl uname -r abgefragt werden.

Versionsnummern-Schema[Bearbeiten | Quelltext bearbeiten]

Die frühen Kernelversionen (0.01 bis 0.99) hatten noch kein klares Nummerierungsschema. Version 1.0 sollte die erste „stabile“ Linux-Version werden. Beginnend mit Version 1.0 folgen die Versionsnummern von Linux einem bestimmten Schema:

Die erste Ziffer wird nur bei grundlegenden Änderungen in der Systemarchitektur angehoben. Während der Entwicklung des 2.5er Kernels kam wegen der relativ grundlegenden Änderungen, verglichen mit dem 2.4er Kernel, die Diskussion unter den Kernel-Programmierern auf, den nächsten Produktionskernel als 3.0 zu deklarieren. Torvalds war aber aus verschiedenen Gründen dagegen, sodass der resultierende Kernel als 2.6 bezeichnet wurde.

Die zweite Ziffer gibt das jeweilige „Majorrelease“ an. Bisher wurden stabile Versionen (Produktivkernel) von den Entwicklern stets durch gerade Ziffern wie 2.2, 2.4 und 2.6 gekennzeichnet, während die Testversionen (Entwicklerkernel) immer ungerade Ziffern trugen, wie zum Beispiel 2.3 und 2.5; diese Trennung ist aber seit Juli 2004 ausgesetzt, es gab keinen Entwicklerkernel mit der Nummer 2.7, stattdessen wurden die Änderungen laufend in die 2.6er-Serie eingearbeitet.

Zusätzlich bezeichnet eine dritte Zahl das „Minorrelease“, das die eigentliche Version kennzeichnet. Werden neue Funktionen hinzugefügt, steigt die dritte Zahl an. Der Kernel wird damit zum Beispiel mit einer Versionsnummer wie 2.6.7 bestimmt.

Um die Korrektur eines schwerwiegenden NFS-Fehlers schneller verbreiten zu können, wurde mit der Version 2.6.8.1 erstmals eine vierte Ziffer eingeführt. Seit März 2005 (Kernel 2.6.11) wird diese Nummerierung offiziell verwendet.[13] So ist es möglich, die Stabilität des Kernels trotz teilweise sehr kurzer Veröffentlichungszyklen zu gewährleisten und Korrekturen von kritischen Fehlern innerhalb weniger Stunden in den offiziellen Kernel zu übernehmen – wobei sich die vierte Ziffer erhöht (z. B. von 2.6.11.1 auf 2.6.11.2). Die Minorreleasenummer, also die dritte Ziffer, wird hingegen nur bei Einführung neuer Funktionen hochgezählt.

Im Mai 2011 erklärte Linus Torvalds, die nach der Version 2.6.39 kommende Version nicht 2.6.40, sondern 3.0 zu benennen.[14] Als Grund dafür führte er an, dass die Versionsnummern seiner Meinung nach zu hoch wurden. Die Versionsnummer '3' stehe gleichzeitig für das dritte Jahrzehnt, welches für den Linux-Kernel mit seinem 20. Geburtstag anfange. Bei neuen Versionen wird seitdem die zweite Ziffer erhöht und die dritte steht – anstelle der vierten – für Bugfixreleases.

Im Februar 2015 erhöhte Torvalds auf Version 4.0 statt Version 3.20[15] nachdem er auf Google+ Meinungen hierzu eingeholt hatte.[16] Seit März 2019 ist Linux 5.0 freigegeben. Dabei hat der Sprung von der letzten Versionsnummer 4.20 auf 5.0 keine tiefergehende Bedeutung. Die aktuelle Version soll eine modernere Speicherfunktion und mehr Geschwindigkeit liefern.[17]

Entwicklerversion[Bearbeiten | Quelltext bearbeiten]

Neue Funktionen finden sich im -mm Kernel des Kernelentwicklers Andrew Morton und werden anschließend in den Hauptzweig von Torvalds übernommen. Somit werden große Unterschiede zwischen Entwicklungs- und Produktionskernel und damit verbundene Portierungsprobleme zwischen den beiden Serien vermieden. Durch dieses Verfahren gibt es auch weniger Differenzen zwischen dem offiziellen Kernel und den Distributionskernel (früher wurden Features des Entwicklungszweiges von den Distributoren häufig in ihre eigenen Kernels rückintegriert). Allerdings litt 2004/2005 die Stabilität des 2.6er Kernels unter den häufig zu schnell übernommenen Änderungen. Ende Juli 2005 wurde deshalb ein neues Entwicklungsmodell beschlossen, das nach dem Erscheinen der Version 2.6.13 erstmals zur Anwendung kam: Neuerungen werden nur noch in den ersten zwei Wochen der Kernelentwicklung angenommen, wobei anschließend eine Qualitätssicherung bis zum endgültigen Erscheinen der neuen Version erfolgt.

Pflege der Kernel-Versionen[Bearbeiten | Quelltext bearbeiten]

Während Torvalds die neuesten Entwicklungsversionen veröffentlicht, wurde die Pflege der älteren „stabilen“ Versionen an andere Programmierer abgegeben. Gegenwärtig ist David Weinehall für die 2.0er Serie verantwortlich, Marc-Christian Petersen (zuvor Alan Cox) für den Kernel 2.2, Willy Tarreau (zuvor Marcelo Tosatti) für den Kernel 2.4, Greg Kroah-Hartman und Chris Wright für die aktuellen stabilen Kernel 3.x.y(-stable), Linus Torvalds für die aktuellen „normalen“ Kernel 4.x.y, und Andrew Morton für seinen experimentellen -mm-Zweig, basierend auf dem neuesten 4.x. Zusätzlich zu diesen offiziellen und über Kernel.org oder einen seiner Mirrors zu beziehenden Kernel-Quellcodes kann man auch alternative „Kernel-Trees“ aus anderen Quellen benutzen. Distributoren von Linux-basierten Betriebssystemen pflegen meistens ihre eigenen Versionen des Kernels und beschäftigen zu diesem Zwecke fest angestellte Kernel-Hacker, die ihre Änderungen meist auch in die offiziellen Kernels einfließen lassen.

Distributions-Kernel sind häufig intensiv gepatcht, um auch Treiber zu enthalten, die noch nicht im offiziellen Kernel enthalten sind, von denen der Distributor aber glaubt, dass seine Kundschaft sie benötigen könnte und die notwendige Stabilität respektive Fehlerfreiheit dennoch gewährleistet ist.

Versionen mit Langzeitunterstützung[Bearbeiten | Quelltext bearbeiten]

Folgende Versionen werden besonders lange mit Support (Long Term Support) versorgt:[18]

Version Veröffentlichung Support-Ende (EOL)
3.16 03. Aug. 2014 April 2020
4.4 10. Jan. 2016 Februar 2022
4.9 11. Dez. 2016 Januar 2023
4.14 12. Nov. 2017 Januar 2024
4.19 22. Okt. 2018 Dezember 2020
5.4 24. Nov. 2019 Dezember 2021

Versionsgeschichte[Bearbeiten | Quelltext bearbeiten]

Zeittafeln[Bearbeiten | Quelltext bearbeiten]

Entwicklung der Anzahl Quelltextzeilen

Das folgende Schaubild stellt einzelne Versionen des Linux-Kernels anhand der Erscheinungsdaten auf einer Zeittafel angeordnet dar und soll dem Überblick dienen.

Versionsgeschichte bis Version 2.6[Bearbeiten | Quelltext bearbeiten]

Zweig Version Veröffentlichung[19] Dateien(a) Quellcode-
zeilen
(b)
Größe
in kB(c)
Bemerkungen
Ältere Version; nicht mehr unterstützt: 0.01 17. September 1991 88 8.413 230 erste Veröffentlichung; startete auf Systemen mit Floppy-Diskettenlaufwerk und 386er-Prozessor, lud dabei die Treiber für das Minix-Dateisystem und eine finnische Tastatur, sowie als einziges Anwendungsprogramm den Kommandozeileninterpreter bash[20]
1.0 Ältere Version; nicht mehr unterstützt: 1.0.0 13. März 1994 563 170.581 1.259
1.1 Ältere Version; nicht mehr unterstützt: 1.1.0 6. April 1994 561 170.320 1.256 Entwicklungsversion
Ältere Version; nicht mehr unterstützt: 1.1.95 2. März 1995 2.301
1.2 Ältere Version; nicht mehr unterstützt: 1.2.0 7. März 1995 909 294.623 2.301 erste Portierungen auf weitere Prozessorarchitekturen, mit Alpha, MIPS und SPARC[21]
Ältere Version; nicht mehr unterstützt: 1.2.13 2. August 1995 2.355
1.3 Ältere Version; nicht mehr unterstützt: 1.3.0 12. Juni 1995 992 323.581 2.558 Entwicklungsversion mit erster Unterstützung für Mehrprozessorsysteme[21]
Ältere Version; nicht mehr unterstützt: 1.3.100 10. Mai 1996 5.615
2.0 Ältere Version; nicht mehr unterstützt: 2.0.0 9. Juni 1996 2.015 716.119 5.844 erste Unterstützung für symmetrische Mehrprozessorsysteme[21]
Ältere Version; nicht mehr unterstützt: 2.0.40 8. Februar 2004 7.551
2.1 Ältere Version; nicht mehr unterstützt: 2.1.0 30. September 1996 1.727 735.736 6.030 Entwicklungsversion
Ältere Version; nicht mehr unterstützt: 2.2.0-pre9 21. Januar 1999 13.077
2.2 Ältere Version; nicht mehr unterstützt: 2.2.0 26. Januar 1999 4.599 1.676.182 13.080 erste Unterstützung für das Netzwerkprotokoll IPv6 sowie Portierung auf die Plattformen UltraSPARC und PA-RISC[21]
Ältere Version; nicht mehr unterstützt: 2.2.26 24. Februar 2004 19.530
2.3 Ältere Version; nicht mehr unterstützt: 2.3.0 11. Mai 1999 4.721 1.763.358 13.804 Entwicklungsversion
Ältere Version; nicht mehr unterstützt: 2.3.99-pre9 23. Mai 2000 20.882
2.4 Ältere Version; nicht mehr unterstützt: 2.4.0 4. Januar 2001 8.187 3.158.560 24.379 erste Unterstützung für den Energieverwaltungsstandard ACPI und für den Datenbus USB,[21] Einführung des Netfilter und der iptables;[22] letzter gepflegter Zweig vor 2.6[23]
Ältere Version; nicht mehr unterstützt: 2.4.37 2. Dezember 2008 38.735 Letzte Version war 2.4.37.11 am 18. Dezember 2010
2.5 Ältere Version; nicht mehr unterstützt: 2.5.0 23. November 2001 9.893 3.833.603 29.405 Entwicklungsversion
Ältere Version; nicht mehr unterstützt: 2.5.75 10. Juli 2003 40.969
2.6 Ältere Version; nicht mehr unterstützt: 2.6.0 18. Dezember 2003 21.279 8.102.486 41.614 neues Versionsschema, dabei wurden die bisherigen Entwicklerzweige durch einen stetigen Entwicklungsprozess ersetzt[21]
→ für alle nachfolgenden Versionen siehe Abschnitt „Versionsgeschichte ab Version 2.6“
Legende:
Alte Version
Ältere Version; noch unterstützt
Aktuelle Version
Aktuelle Vorabversion
Zukünftige Version

Versionsgeschichte ab Version 2.6[Bearbeiten | Quelltext bearbeiten]

Bei Betrachtung der zuletzt erschienenen Versionen (siehe Tabelle) erfolgt die Entwicklung einer neuen Kernel-Version in durchschnittlich 82 Tagen. Der Kernel wird hierbei im Durchschnitt um 768 Dateien und 325.892 Quelltextzeilen (englisch Lines of Code) erweitert. Das mit dem Datenkompressionsprogramm gzip komprimierte tar-Archiv (.tar.gz) wächst im Mittel um rund 2 Megabyte mit jeder veröffentlichten Hauptversion.

Version Veröffentlichung[19] Anzahl der Dateien(a) Quelltext-
zeilen
(b)
Größe
in kB(c)
Zeitraum
in Tagen(d)
Bemerkungen
Ältere Version; nicht mehr unterstützt: 2.6.13 28. Aug. 2005 u. a. wurde Inotify aufgenommen[24]
Ältere Version; nicht mehr unterstützt: 2.6.20 04. Feb. 2007 21.280 8.102.486 54.548 66 erste Unterstützung für die Virtualisierungstechnik KVM[25]
Ältere Version; nicht mehr unterstützt: 2.6.21 26. Apr. 2007 21.614 8.246.470 55.329 80
Ältere Version; nicht mehr unterstützt: 2.6.22 08. Juli 2007 22.411 8.499.363 56.914 74
Ältere Version; nicht mehr unterstützt: 2.6.23 09. Okt. 2007 22.530 8.566.554 57.404 93
Ältere Version; nicht mehr unterstützt: 2.6.24 24. Jan. 2008 23.062 8.859.629 59.079 107
Ältere Version; nicht mehr unterstützt: 2.6.25 17. Apr. 2008 23.810 9.232.484 61.518 83
Ältere Version; nicht mehr unterstützt: 2.6.26 13. Juli 2008 24.270 9.411.724 62.550 88
Ältere Version; nicht mehr unterstützt: 2.6.27 09. Okt. 2008 24.354 9.709.868 63.721 88 wurde nachträglich mit Unterstützung für neue Hardware (wie SAS) erweitert;[26]
Letzte Version war 2.6.27.62 am 17. März 2012
Ältere Version; nicht mehr unterstützt: 2.6.28 24. Dez. 2008 25.255 10.195.507 66.766 76
Ältere Version; nicht mehr unterstützt: 2.6.29 23. Mär. 2009 26.668 11.010.647 71.977 89 Aufnahme des Btrfs[27][28]
Ältere Version; nicht mehr unterstützt: 2.6.30 10. Juni 2009 27.879 11.637.173 75.768 78 USB-3.0-Unterstützung
Ältere Version; nicht mehr unterstützt: 2.6.31 09. Sep. 2009 29.111 12.046.317 78.279 92 Unterstützung für Festplatten mit nativen 4K-Sektoren (auch bekannt als Advanced Format)
Ältere Version; nicht mehr unterstützt: 2.6.32 03. Dez. 2009 30.485 12.610.030 81.901 84 Letzte Version war 2.6.32.71 am 12. März 2016
Ältere Version; nicht mehr unterstützt: 2.6.33 24. Feb. 2010 31.565 12.990.041 84.533 83 bildet die Grundlage für einen Echtzeit-Zweig;[29]
Letzte Version war 2.6.33.20 am 7. November 2011[30]
Ältere Version; nicht mehr unterstützt: 2.6.34 16. Mai 2010 32.297 13.320.934 86.520 82 Grafiktreiber für neuere AMD-Radeon-GPUs und die Grafikkerne von einigen erst Anfang nächsten Jahres erwarteten Intel-Prozessoren, neue Dateisysteme: LogFS und Ceph;[31] viele Änderungen an den Dateisystemen Btrfs, ext4, NILFS2, SquashFS und XFS,[32] dem SCSI-Subsystem und dem Architektur-Code für ARM-, Blackfin- und MicroBlaze-CPUs;[33] bessere Unterstützung für neue und ältere AMD- und Intel-Chips; größere Umbaumaßnahmen am Nouveau-Treiber für Nvidia-Grafik;[34]
Letzte Version war 2.6.34.15 am 10. Februar 2014
Ältere Version; nicht mehr unterstützt: 2.6.35 01. Aug. 2010 33.316 13.545.604 88.301 77 neu sind unter anderem ein verbesserter Netzwerkdurchsatz, defragmentierbarer Arbeitsspeicher und die Unterstützung für die Turbo-Core-Funktion moderner AMD-Prozessoren;[35] die Unterstützung für die Stromsparfunktionen von Radeon-Grafikchips wurde verbessert, sowie die neuen H.264-Dekodierfunktionen für den Grafikkern in Intels Core-i5-Prozessoren (auch Ironlake genannt);[36]
Letzte Version war 2.6.35.14 am 13. März 2012[37]
Ältere Version; nicht mehr unterstützt: 2.6.36 20. Okt. 2010 34.301 13.499.457 88.707 80 neu sind – im auch „Flesh-Eating Bats with Fangs“ (englisch für „Fleischfressende Fledermäuse mit Reißzähnen“) genannten 36er Zweig[38]  – unter anderem das Sicherheits-Framework AppArmor, die Schnittstelle „LIRC“ (für das in Version 2.6.35 eingeführte System zur Nutzung von Infrarot-Fernbedienungen) und eine verbesserte Energieverwaltung für Grafikprozessoren;[39] Unterstützung für Echtzeit-Virenscanner;[40]
Letzte Version war 2.6.36.4 am 17. Februar 2011
Ältere Version; nicht mehr unterstützt: 2.6.37 05. Jan. 2011 35.186 13.916.632 92.474 76 neu sind, neben den üblichen zusätzlichen Treibern (u. a. für USB 3.0), eine verbesserte Skalierung und Virtualisierung für Mehrkernprozessoren;[41]
Letzte Version war 2.6.37.6 am 27. März 2011
Ältere Version; nicht mehr unterstützt: 2.6.38 15. Mär. 2011 35.864 14.208.866 94.144 69 Unterstützung für die AMD-Radeon-HD-6000-Serie und für AMDs APUs,[42] sowie Verbesserungen für Audio- und Video-Verarbeitung als auch für berührungsempfindliche Bildschirme;[43]
Letzte Version war 2.6.38.8 am 3. Juni 2011
Ältere Version; nicht mehr unterstützt: 2.6.39 19. Mai 2011 36.705 14.533.582 95.994 65 Unterstützung für Firewall-IP sets,[44][45] der Big Kernel Lock wird entfernt;[46]
Letzte Version war 2.6.39.4 am 3. August 2011
Ältere Version; nicht mehr unterstützt: 3.0 22. Juli 2011 36.781 14.646.952 96.676 64 neues Versionsnummernschema,[47] zudem neue Treiber u. a. für (virtuelle) Netzwerkgeräte und den Fernseh-Standard DVB-T2, sowie allgemein verbesserte Virtualisierung (u. a. durch abschließende Arbeiten an dem Hypervisor Xen) und viele kleine Verbesserungen (wie z. B. Schreib- und Lösch-Optimierungen für Dateisysteme);[48][49]
Letzte Version war 3.0.101 am 22. Oktober 2013
Ältere Version; nicht mehr unterstützt: 3.1 24. Okt. 2011 37.084 14.770.469 97.334 94 neu ist u. a. die Unterstützung der Prozessor-Plattform OpenRISC;[50]
Letzte Version war 3.1.10 am 18. Januar 2012
Ältere Version; nicht mehr unterstützt: 3.2 04. Jan. 2012 37.617 14.998.651 ≈ 62.600 73 neu ist u. a. die Unterstützung für die Prozessor-Architektur Hexagon des Unternehmens Qualcomm; zudem wurden u. a. einige Netzwerktreiber in das zugehörige Subsystem ausgelagert[30]
Letzte Version war 3.2.102 am 31. Mai 2018
Ältere Version; nicht mehr unterstützt: 3.3 18. Mär. 2012 38.082 15.166.074 ≈ 75.300 74 neu ist u. a. die Unterstützung für die Android-Plattform;[51]
Letzte Version war 3.3.8 am 1. Juni 2012
Ältere Version; nicht mehr unterstützt: 3.4 20. Mai 2012 38.566 15.383.860 ≈ 64.100 63 neunte LTS-Freigabe; neu ist u. a. die Unterstützung des Ruhezustand-Modus RC6;[52][53][54]
Letzte Version war 3.4.113 am 26. Oktober 2016
Ältere Version; nicht mehr unterstützt: 3.5 21. Juli 2012 39.096 15.596.378 ≈ 77.200 62 die Unterstützung für die veralteten Netzwerk-Standards Token Ring und Econet wurde entfernt;[55]
Letzte Version war 3.5.7 am 12. Oktober 2012
Ältere Version; nicht mehr unterstützt: 3.6 30. Sep. 2012 39.733 15.868.036 ≈ 78.500 71 u. a. wurde die Energiespar- oder Schlaffunktion, für den Bereitschaftsbetrieb und Ruhezustand des gesamten Systems, weiterentwickelt;[56]
Letzte Version war 3.6.11 am 17. Dezember 2012
Ältere Version; nicht mehr unterstützt: 3.7 11. Dez. 2012 40.905 16.191.690 ≈ 79.800 71 u. a. NAT für IPv6, Unterstützung für den ARM-64-Bit-Befehlssatz und Ext4-Größenänderungen für Laufwerke die größer sind als 16 Terabyte, größere Veränderungen an den Grafiktreibern für Nvidia-, Intel- und AMD-Grafik und verbesserte Hardware-Unterstützung für Helligkeitsregelung und Stromsparfunktionen von Soundkarten;[57]
Letzte Version war 3.7.10 am 27. Februar 2013
Ältere Version; nicht mehr unterstützt: 3.8 18. Feb. 2013 41.520 16.416.874 84.623 70 u. a. wurde die Unterstützung für das Dateisystem F2FS eingefügt[58] und die Unterstützung für Intel 80386-Prozessoren entfernt;[59] soll als Basis für die nächste Android-Version dienen;[60]
Letzte Version war 3.8.13 am 11. Mai 2013
Ältere Version; nicht mehr unterstützt: 3.9 29. Apr. 2013 42.423 16.686.879 ≈ 82.000 69 u. a. wurde die Unterstützung für 32-Bit-Prozessoren der Baureihe HTP (von Meta)[61] sowie ARC 700 (von Synopsys)[62] hinzugefügt und die Treiber für das Dateisystem Btrfs um eine erste Unterstützung für Raid 5 und 6 erweitert;[60][63]
Letzte Version war 3.9.11 am 21. Juli 2013
Ältere Version; nicht mehr unterstützt: 3.10 30. Juni 2013 43.016 16.955.489 ≈ 69.900 63 unter anderem bessere Unterstützung für den Unified Video Decoder (UVD) von AMD-Radeon-GPUs und bessere Unterstützung von Nvidia Tegra; Zudem wurden die Echtzeitfähigkeiten verbessert sowie die Nutzung von SSDs als Cache für Festplatten ermöglicht.[64] Neu ist auch der Treiber für die Hochgeschwindigkeitsübertragungstechnologie InfiniBand;[65]
Letzte Version war 3.10.108 am 4. November 2017
Ältere Version; nicht mehr unterstützt: 3.11 02. Sep. 2013 44.002 17.403.279 ≈ 71.600 63 neben Optimierungen an den Grafik-Treibern, ist die Aufnahme von verschiedenen neuen WLAN- und LAN-Treibern sowie die Verbesserung der KVM- und Xen-Unterstützung auf ARM64 vorgesehen;[66] wird der Arbeitsspeicher knapp kann dieser mit einem Zswap (siehe auch Zip und Swap) komprimiert werden;[67]
Letzte Version war 3.11.10 am 29. November 2013 – Wegen ihrer Versionsnummer auch Linux for Workgroups genannt, angelehnt an Microsoft's Windows 3.11 for Workgroups.[68]
Ältere Version; nicht mehr unterstützt: 3.12 03. Nov. 2013 44.586 17.726.872 ≈ 73.000 62 neben Optimierungen an den Optimus-Treibern, ist die Unterstützung eines SYN-Proxy hinzugekommen,[69] der SYN-Flooding-Angriffe verhindern soll;[70] Multithreading bei mit Mdadm angelegten Raid-5-Arrays und Btrfs beherrscht Deduplikation;[71]
Letzte Version war 3.12.74 am 9. Mai 2017
Ältere Version; nicht mehr unterstützt: 3.13 20. Jan. 2014 44.970 17.930.916 ≈ 73.600 77 enthält die neue Firewall-Infrastruktur Nftables (welche die mit dem 2.4er eingeführten Iptables ablösen soll), bessere 3D-Leistung und Aktivierung des Dynamic Power Management (DPM) bei AMD-Radeon-Grafikkarten.[72][73] Moderneres Multiqueue-Storage-Interface;[74]
Letzte Version war 3.13.11 am 22. April 2014
Ältere Version; nicht mehr unterstützt: 3.14 31. Mär. 2014 45.935 18.271.989 ≈ 74.900 70 ein Scheduler, der für Echtzeitsysteme geeignet ist,[75] hinzugefügt und u. a. ist nun Xen 4.4 enthalten;[76] Unterstützung von neuen Grafikkernen und korrekte Funktion des Unified Video Decoder (UVD) für AMD Grafikchips ab HD 7000;[75]
Letzte Version war 3.14.79 am 11. September 2016
Ältere Version; nicht mehr unterstützt: 3.15 08. Juni 2014 46.780 18.632.574 ≈ 76.000 53 das Aufwachen aus dem Suspend-to-RAM-Modus wurde beschleunigt und Open File Description Locks eingeführt. Z. B. Videosoftware soll nun einfacher Teile einer Datei auslesen können und atomares Austauschen von Dateien wird möglich. Die Unterstützung von FUSE, XFS und Flash-Speichern mit einem Dateisystem darauf wurde ausgebaut;[77]
Letzte Version war 3.15.10 am 14. August 2014
Ältere Version; noch unterstützt: 3.16 03. Aug. 2014 47.425 18.879.129 ≈ 76.900 56 eingeflossen sind u. a. Robustheitsmaßnahmen beim Dateisystem Btrfs, die Grafiktreiber Radeon und Nouveau wurden optimiert;[78]
Aktuelle Version: 3.16.78 am 23. November 2019
Ältere Version; nicht mehr unterstützt: 3.17 05. Okt. 2014 47.490 18.864.388 ≈ 76.600 63 Die Funktion getrandom() und Vorgaben zur Mindest-Entropie sorgen für sicherere Zufallszahlen. Neu sind Grundlagen für Kdbus, Fences in Dma-Buf, MST (Multi Stream Transport, Teil von DisplayPort 1.2) für 4K-Monitore, sowie die Unterstützung für den Xbox-One-Controller und ForcePad-Touchpads. Optimierungen für Thunderbolt bei Apple-Geräten;[79]
Letzte Version war 3.17.8 am 8. Januar 2015
Ältere Version; nicht mehr unterstützt: 3.18 07. Dez. 2014 47.971 18.994.096 ≈ 77.300 64 Aufnahme des OverlayFS; Verbesserungen bei Btrfs und F2FS; Tunnelung beliebiger Protokolle ist über UDP ermöglicht; Audio-Ausgabe mit dem Nouveau-Treiber über DisplayPort; Just-in-time-Kompilierung des Extended Berkeley Packet Filter (eBPF) für ARM64; der BPF ist nun durch den Syscall bpf() allgemein verfügbar; Modulparameter können als unsicher (englisch unsafe) markiert werden;[80]
Letzte Version war 3.18.140 am 16. Mai 2019
Ältere Version; nicht mehr unterstützt: 3.19 09. Feb. 2015 48.424 19.130.604 ≈ 77.900 63 u. a. Unterstützung für AMDs Heterogeneous System Architecture (HSA),[81] zudem wurde das Interprozesskommunikations­framework Binder aufgenommen,[82] welches ursprünglich für Android entwickelt wurde und auf OpenBinder aufbaut;[83]
Letzte Version war 3.19.8 am 11. Mai 2015
Ältere Version; nicht mehr unterstützt: 4.0 12. Apr. 2015 48.945 19.312.370 ≈ 78.500 63 u. a. Unterstützung für Updates im laufenden Betrieb (Kernel Live Patching);[84][85]
Letzte Version war 4.0.9 am 21. Juli 2015
Ältere Version; nicht mehr unterstützt: 4.1 22. Juni 2015 49.457 19.512.485 ≈ 79.300 70 u. a. Verschlüsselung für Ext4, Treiber für NV-DIMMs und Schaffung der Grundlagen zur 3D-Beschleunigung in virtuellen Maschinen;[86]
Letzte Version war 4.1.52 am 28. Mai 2018
Ältere Version; nicht mehr unterstützt: 4.2 30. Aug. 2015 50.795 20.311.717 ≈ 82.000 70 u. a. Update von UEFI nun aus Linux möglich, Unterstützung der AMD-Grafikkarten der Volcanic-Islands-Generation;[87]
Letzte Version war 4.2.8 am 15. Dezember 2015
Ältere Version; nicht mehr unterstützt: 4.3 02. Nov. 2015 51.570 20.621.444 ≈ 83.000 63 Unterstützung für Skylake und Fiji-GPUs;[88] IPv6 wird Voreinstellung;[89]
Letzte Version war 4.3.6 am 19. Februar 2016
Ältere Version; noch unterstützt: 4.4 10. Jan. 2016 52.221 20.862.115 ≈ 83.300 70 Kernel mit Langzeitunterstützung;[90] Grafiktreiber für den Raspberry Pi und weitere 3D-Grafikbeschleunigungen in KVM für virtuelle Maschinen, Verbesserungen bei RAID und SSDs, BPF-Aufrufe sind nun auch im Userspace möglich;[91][92]
Aktuelle Version: 4.4.206 am 5. Dezember 2019
Ältere Version; nicht mehr unterstützt: 4.5 14. Mär. 2016 52.916 21.154.545 ≈ 84.300 63 weitere Besserungen in den 3D-Treibern, unter anderem durch die Unterstützung für PowerPlay, und reibungslose Wechsel der Netzwerkverbindungen;[93][94] Verbesserungen beim Zugriff auf NFS-Server;[95]
Letzte Version war 4.5.7 am 8. Juni 2016
Ältere Version; nicht mehr unterstützt: 4.6 15. Mai 2016 53.660 21.422.694 ≈ 85.300 63 u. a. verbesserte Energieverwaltung durch die Möglichkeit der Taktraten-Einstellung bei Tegra-X1-GPUs und durch die Freischaltung der Frame Buffer Compression (FBC) für Prozessoren der Haswell-Architektur und Broadwell, des Weiteren wurde das Dateisystem OrangeFS freigeschaltet sowie zusätzliche Werkzeuge zur besseren Fehlererkennung (englisch bug hunting);[96][97]
Letzte Version war 4.6.7 am 16. August 2016
Ältere Version; nicht mehr unterstützt: 4.7 24. Juli 2016 54.400 21.712.846 ≈ 86.200 70 u. a. erste Unterstützung für neue Radeon-Grafikkarten (unter dem Decknamen Polaris), vier weitere ARM-Treiber und Unterstützung für Spiele-Steuergeräte;[98][99] zudem bessere SMR-Unterstützung und Beschleunigungen beim Tunneln;[100] im Vergleich zum Vorgänger (4.6) werden nun rund 500 weitere Hardware-Komponenten unterstützt;[101]
Letzte Version war 4.7.10 am 22. Oktober 2016
Ältere Version; nicht mehr unterstützt: 4.8 02. Okt. 2016 55.503 22.071.048 ≈ 87.700 70 neben der Unterstützung neuer Treiber für Haupt- und Grafik-Prozessoren von AMD, ARM (Mali), Intel und Nvidia wurde u. a. das Übertakten (oder Overclocking) für AMD-Grafiktreiber und eine neue GPU-Virtualisierungstechnik für Intel-Grafiktreiber eingeführt, des Weiteren wurde das XFS überarbeitet, so dass es auch Datenintegritäten prüfen sowie Datendeduplizierung und das Copy-On-Write-Verfahren beherrscht;[102][103]
Letzte Version war 4.8.17 am 9. Januar 2017
Ältere Version; noch unterstützt: 4.9 11. Dez. 2016 56.223 22.348.356 ≈ 88.900 70 neben Verbesserungen in der Sicherheit – durch besseren Schutz vor Stapelüberläufen – erhalten u. a. die Treiber für das XFS eine Shared Data Extents genannte Erweiterung, welche auf die (bereits im 4.8er-Kern eingeführte) Reverse-Mapping-Infrastruktur aufsetzt und es künftig ermöglichen soll, dass sich mehrere Dateien einen Daten- oder Wert(e)bereich teilen können und dieser auch mehrere Besitzer haben kann; zudem wurden erste Unterstützungen für den sogenannten Greybus eingearbeitet, welcher ursprünglich für das ehemals von Google entwickelte modulare Smartphone Ara gedacht war und u. a. von Motorola in einem ihrer Geräte genutzt wird;[104][105]
Aktuelle Version: 4.9.206 am 5. Dezember 2019
Ältere Version; nicht mehr unterstützt: 4.10 19. Feb. 2017 57.172 22.839.541 ≈ 89.900 71 Verbesserungen beim Schreiben auf Datenträger und Einführung einer schnelleren Fehlererkennung in RAID-Systemen, zudem wurden u. a. EFI-Zugriffe verbessert und der LED-Treiber uleds eingearbeitet[106] sowie ein Verfahren zur Grafikbeschleunigung virtueller Maschinen eingeführt;[107] bei Intel-Prozessoren kann der Cache zwischen Prozessen aufgeteilt werden, die Funktionen für die ARM64-Architektur wurden ausgebaut, Überarbeitungen beim Routing, das Dateisystem UBIFS wurde um eine optionale Verschlüsselung ergänzt, während logfs entfernt wurde;[108]
Letzte Version war 4.10.17 am 20. Mai 2017
Ältere Version; nicht mehr unterstützt: 4.11 01. Mai 2017 57.964 23.137.284 ≈ 91.000 71 Verringerung des Stromverbrauches von NVMe-SSDs durch die Stromspartechnik APST; Unterstützung für selbstverschlüsselnde SSDs; Verbesserungen bei der Abfrage von Metadaten für Verzeichnisse und Dateien; Überarbeitung der in 4.10 eingeführten Funktion Intel Turbo Boost Max 3.0; Verbesserungen bei der Grafikbeschleunigung virtueller Maschinen für AMD-Grafikeinheiten;[109] Anpassungen für ext4, um die Nutzung als Wegwerfdateisystem zu verbessern;[110]
Letzte Version war 4.11.12 am 21. Juli 2017
Ältere Version; nicht mehr unterstützt: 4.12 02. Juli 2017 59.808 24.173.535 ≈ 99.000 62 Einführung des Scheduler "Budget Fair Queueing" (BFQ) für bessere Performance bei Datenträgerzugriffen, Unterstützung von AMDs Grafikprozessor Radeon Vega;[111]
Letzte Version war 4.12.14 am 20. September 2017
Ältere Version; nicht mehr unterstützt: 4.13 03. Sep. 2017 60.543 24.767.008 ≈ 100.000 63 Performancegewinn im Protokoll HTTPS, Verzeichnisse im Ext4-Dateisystemen können nun bis zu 2 Milliarden Einträge enthalten;[112]
Letzte Version war 4.13.16 am 24. November 2017
Ältere Version; noch unterstützt: 4.14 12. Nov. 2017 61.258 25.041.165 ≈ 97.000 70 LTS-Version;[113] Unterstützung bis zu 4096 Terabyte Arbeitsspeicher;[114]
Aktuelle Version: 4.14.158 am 5. Dezember 2019
Ältere Version; nicht mehr unterstützt: 4.15 28. Jan. 2018 62.271 25.364.680 ≈ 100.000 78 Einbau diverser Schutzmechanismen vor Meltdown und Spectre, der Treiber Amdgpu unterstützt nun AMDs Vega-Grafikkarten besser;[115]
Letzte Version war 4.15.18 am 19. April 2018
Ältere Version; nicht mehr unterstützt: 4.16 01. Apr. 2018 62.883 25.558.670 100.606 63 Letzte Version war 4.16.18 am 26. Juni 2018
Ältere Version; nicht mehr unterstützt: 4.17 03. Juni 2018 61.332 25.379.428 99.772 63 HDCP-Unterstützung bei Intel-CPUs mit integriertem Grafikprozessor, erste Gegenmaßnahmen gegen Spectre v4 (Speculative Store Bypass), Entfernung Architektursupport Blackfin, AXIS CRIS und 6 weiterer;[116]
Letzte Version war 4.17.19 am 24. August 2018
Ältere Version; nicht mehr unterstützt: 4.18 12. Aug. 2018 60.973 25.280.736 101.782 70 Vorarbeiten für leistungsgesteigerte Firewall Bpfilter; Unterstützung für GPU von Kaby Lake-G und der angekündigten Vega20; Erster Support für Qualcomms Snapdragon-845-Prozessor;[117]
Letzte Version war 4.18.20 am 21. November 2018
Ältere Version; noch unterstützt: 4.19 22. Okt. 2018 61.700 25.588.319 103.117 71 LTS-Version; neuen „Code of Conduct“ für Entwickler fest in die Kernel-Dokumentation aufgenommen,[118] Unterstützung des neuen Wlan Standards 802.11ax, Performanceverbesserung der SATA-Treiber;[119] Aktuelle Version: 4.19.88 am 5. Dezember 2019
Ältere Version; nicht mehr unterstützt: 4.20 23. Dez. 2018 62.446 25.955.384 104.258 62 Amdgpu-Treiber unterstützt neue GPUs von AMD, Behebung der Sicherheitslücke für die zweite Variante von Spectre;[120]
Letzte Version war 4.20.17 am 19. März 2019
Ältere Version; nicht mehr unterstützt: 5.0 03. Mär. 2019 63.135 26.211.072 102.776 70 u. a. neu hinzugekommen ist der Support für Freesync von AMD;[121]
Letzte Version war 5.0.21 am 4. Juni 2019
Ältere Version; nicht mehr unterstützt: 5.1 06. Mai 2019 63.873 26.459.776 ≈ 101.000 63 Datenträger können nun über asynchronem I/O (AIO) angesprochen werden;[122]
Letzte Version war 5.1.21 am 28. Juli 2019
Ältere Version; nicht mehr unterstützt: 5.2 07. Juli 2019 64.587 26.552.127 ≈ 102.000 63 u. a. Verzeichnisse in Ext4 können nun auch case-insensitive genutzt werden; die Performance von Meltdown- und Spectre v2-Patches wurde optimiert.[123]
Letzte Version war 5.2.21 am 11. Oktober 2019
Ältere Version; noch unterstützt: 5.3 15. Sep. 2019 65.261 27.141.312 ≈ 108.500 70 u. a. Unterstützung für neue AMD Navi 10 GPUs und Zhaoxin x86 CPUs, einige Neuerungen für Effizienzverbesserungen (Support für umwait-Instruktionen, Intel Speed Select, Utilization Clamping im Scheduler), 16 Millionen weitere IPv4-Adressen aus dem 0.0.0.0/8-Bereich werden verfügbar gemacht;[124]

Aktuelle Version: 5.3.15 am 4. Dezember 2019

Aktuelle Version: 5.4 24. Nov. 2019 65.701 27.538.212 ≈ 109.400 70 LTS-Version; Unterstützung für Microsofts exFAT-Dateisystem, Integration des Kernel Lockdown-Features, Support für weitere AMD GPU/APU Produkte (Navi 12/14, Arcturus, Renoir), verbesserte Performance für Host-Dateisystemzugriffe aus einer virtuellen Maschine mit virtio-fs;[125]

Aktuelle Version: 5.4.2 am 4. Dezember 2019

Zukünftige Version: 5.5   2020
Legende:
Ältere Version; nicht mehr unterstützt
Ältere Version; noch unterstützt
Aktuelle Version
Aktuelle Vorabversion
Zukünftige Version

Anmerkungen[126][127][128][129]

(a) Dateien gezählt mit: find . -type f -not -regex '\./\.git/.*'|wc -l
(b) Quelltextzeilen gezählt mit: find . -type f -not -regex '\./\.git.*'|xargs cat|wc -l
(c) Größe in kB bezogen auf ein mit gzip komprimiertes tar-Archiv (.tar.gz); ab Version 3.2 im Format tar.xz[19]
(d) Der genannte Entwicklungszeitraum bezieht sich lediglich auf die Zusammenführung bereits entwickelter Programmteile, welche selbst teilweise mehrere Jahre zuvor bis zur Zusammenführung entwickelt wurden.

Neuerungen im Kernel 2.6[Bearbeiten | Quelltext bearbeiten]

Die Kernel-Reihe 2.6 wurde ab Dezember 2001 auf Basis der damaligen 2.4er-Reihe entwickelt und wies umfangreiche Neuerungen auf. Für die Entwicklung war der neue Quelltext übersichtlicher und leichter zu pflegen, während Anwender durch die Überarbeitung des Prozess-Schedulers sowie des I/O-Bereiches und von geringeren Latenzzeiten profitierten.[130] Dies wurde durch eine Reihe von Maßnahmen erreicht, die im Folgenden aufgezeigt werden:

Neue Prozess-Scheduler[Bearbeiten | Quelltext bearbeiten]

In einem Multitasking-fähigen Betriebssystem muss es eine Instanz geben, die den Prozessen, die laufen wollen, Rechenzeit zuteilt. Diese Instanz bildet der Prozess-Scheduler. Seit dem Erscheinen von Linux 2.6 wurde mehrfach grundlegend am Scheduler gearbeitet.

Für die ersten Kernel 2.6 war von Ingo Molnár ein gegenüber Linux 2.4 ganz neuer Scheduler konzipiert und implementiert worden, der O(1)-Scheduler. Dieser erhielt seinen Namen, weil die relevanten Algorithmen, auf denen der Scheduler basierte, die Zeitkomplexität haben. Dies bedeutet, dass die vom Scheduler für eigene Aufgaben benötigte Prozessorzeit unabhängig von der Anzahl der verwalteten Prozesse bzw. Threads ist. Insbesondere wurde etwa auf das Durchsuchen aller Prozesse nach dem momentan wichtigsten Prozess verzichtet.

Der O(1)-Scheduler arbeitete auch bei sehr vielen Prozessen überaus effizient und benötigte selbst sehr wenig Rechenzeit. Er verwendete prinzipiell zwei verkettete Listen, in denen die Prozesse eingetragen waren, die noch laufen wollten, und diejenigen, die bereits gelaufen sind. Wenn alle Prozesse in der zweiten Liste standen, wurden die Datenfelder getauscht, und das Spiel begann von neuem. Der Scheduler war darüber hinaus so ausgelegt, dass Prozesse, die große Mengen Rechenzeit in Anspruch nehmen wollen, gegenüber interaktiven Prozessen benachteiligt werden, wenn beide zur gleichen Zeit laufen wollen.

Interaktive Prozesse benötigen in der Regel nur sehr wenig Rechenzeit, sind dafür aber sehr zeitkritisch (so will der Benutzer beispielsweise nicht lange auf eine Reaktion der grafischen Oberfläche warten). Der O(1)-Scheduler besaß Heuristiken, um festzustellen, ob ein Prozess interaktiv ist oder die CPU eher lange belegt.

Der interne „Takt“ des Kernels wurde ab dem Kernel 2.6 von 100 auf 1000 Hertz erhöht, das heißt, die kürzestmögliche Länge einer Zeitscheibe beträgt nun eine Millisekunde. Auch hiervon profitieren besonders die interaktiven Prozesse, da sie früher „wieder an der Reihe sind“. Da dies aber zu einer erhöhten CPU-Last und somit zu einem größeren Stromverbrauch führt, entschied man, den Takt ab dem Kernel 2.6.13 auf 250 Hertz voreinzustellen. Bei der Konfiguration des Kernels sind jedoch auch noch die Werte 100, 300 und 1000 Hertz wählbar.

Mit der Kernelversion 2.6.23 wurde im Oktober 2007 der O(1)-Scheduler durch einen Completely Fair Scheduler (kurz CFS) ersetzt, der ebenfalls von Ingo Molnár entwickelt wurde. Der CFS als gegenwärtig einziger im Hauptentwicklungszweig verfügbarer Scheduler ist unter den Kernel-Entwicklern teilweise umstritten, da er seinen Schwerpunkt auf Skalierbarkeit auch bei Servern mit vielen Prozessorkernen legt. Entwickler wie Con Kolivas sind der Meinung, dass unter dieser Schwerpunktsetzung sowie einigen Designentscheidungen im CFS die Leistung auf typischen Desktop-Systemen leide.[131]

Präemptiver Kernel[Bearbeiten | Quelltext bearbeiten]

Der Kernel ist ab Version 2.6 in den meisten Funktionen präemptiv, d. h. selbst wenn das System gerade im Kernel-Modus Aufgaben ausführt, kann dieser Vorgang durch einen Prozess aus dem User-Modus unterbrochen werden. Der Kernel macht dann weiter, wenn der Usermodus-Prozess seine Zeitscheibe aufgebraucht hat oder selbst eine neue Zeitplanung (englisch Re-Schedule) anfordert, also dem Zeitplaner (englisch Scheduler) mitteilt, dass er einen anderen Task ausführen kann. Dies funktioniert, bis auf einige Kernel-Funktionen, die atomar (nicht unterbrechbar) ablaufen müssen, sehr gut und kommt ebenfalls der Interaktivität zugute.

Zugriffskontrolllisten[Bearbeiten | Quelltext bearbeiten]

Mit dem Kernel 2.6 werden für Linux erstmals Zugriffskontrolllisten (englisch access control lists) nativ eingeführt. Diese sehr feinkörnige Rechteverwaltung ermöglicht es vor allem Systemadministratoren, die Rechte auf einem Dateisystem unabhängig vom Gruppen- und Nutzermodell zu gestalten und dabei faktisch beliebig viele spezielle Rechte pro Datei zu setzen. Die mangelnde Unterstützung von Zugriffskontrolllisten von Linux wurde vorher als massive Schwäche des Systems im Rahmen der Rechteverwaltung und der Möglichkeiten zur sicheren Konfiguration gesehen.

Die Unterstützung von Zugriffskontrolllisten funktioniert dabei mit den Dateisystemen ext2, ext3, jfs und XFS nativ.

Inotify[Bearbeiten | Quelltext bearbeiten]

Mit dem Kernel 2.6.13 hielt erstmals eine Inotify genannte Funktion Einzug in den Kernel. Diese ermöglicht eine andauernde Überwachung von Dateien und Verzeichnissen – wird eines der überwachten Objekte geändert oder ein neues Objekt im Überwachungsraum erschaffen, gibt Inotify eine Meldung aus, die wiederum andere Programme zu definierten Tätigkeiten veranlassen kann. Dies ist insbesondere für Such- und Indexierungsfunktionen der Datenbestände von entscheidender Bedeutung und ermöglicht erst den sinnvollen Einsatz von Desktop-Suchmaschinen wie Strigi oder Meta Tracker. Ohne eine solche Benachrichtigungsfunktion des Kernels müsste ein Prozess die zu überwachende Datei oder das zu überwachende Verzeichnis in bestimmten Zeitintervallen auf Änderungen überprüfen, was im Gegensatz zu Inotify zusätzliche Performance-Einbußen mit sich bringen würde.

Weitere wichtige Änderungen[Bearbeiten | Quelltext bearbeiten]

Soweit es möglich ist, wurde in Linux 2.6 die Maximalzahl für bestimmte Ressourcen angehoben. Die Anzahl von möglichen Benutzern und Gruppen erhöhte sich von 65.000 auf über 4 Milliarden, ebenso wie die Anzahl der Prozess-IDs (von 32.000 auf 1 Milliarde) und die Anzahl der Geräte (Major/Minor-Nummern). Weitere leistungssteigernde Maßnahmen betrafen die I/O-Scheduler, das Threading mit der neuen Native POSIX Thread Library und den Netzwerk-Stack, der nun ebenfalls in den meisten Tests O(1) skaliert ist. Außerdem wurde für die Verwaltung der I/O-Gerätedateien das früher genutzte devfs durch das neuere udev ersetzt, was viele Unzulänglichkeiten, wie zum Beispiel ein zu großes /dev/-Verzeichnis, beseitigt. Außerdem kann so eine einheitliche und konsistente Gerätebenennung erfolgen, die beständig bleibt, was vorher nicht der Fall war.

Lizenzbesonderheiten[Bearbeiten | Quelltext bearbeiten]

Proprietärer Code und Freiheitsbegriff[Bearbeiten | Quelltext bearbeiten]

Die heute von Linus Torvalds herausgegebene Fassung des Kernels enthält proprietäre Objekte in Maschinensprache (BLOBs) und ist daher nicht mehr ausschließlich Freie Software. Richard Stallman bezweifelt sogar, dass sie legal kopiert werden darf, da diese BLOBs im Widerspruch zur GPL stünden und die Rechte aus der GPL daher erlöschen würden.[132] Resultierend daraus rät die Free Software Foundation deshalb dazu, nur BLOB-freie Versionen von Linux einzusetzen, bei denen diese Bestandteile entfernt wurden. Linux-Distributionen mit dem Kernel Linux-libre erfüllen diesen Anspruch.

Der Kernel unter der GPL 2[Bearbeiten | Quelltext bearbeiten]

Die bei GPL-Software übliche Klausel, dass statt der Version 2 der GPL auch eine neuere Version verwendet werden kann, fehlt beim Linux-Kernel.[133] Die Entscheidung, ob die im Juni 2007 erschienene Version 3 der Lizenz für Linux verwendet wird, ist damit nur mit Zustimmung aller Entwickler möglich. In einer Umfrage haben sich Torvalds und die meisten anderen Entwickler für die Beibehaltung der Version 2 der Lizenz ausgesprochen.

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Wolfgang Mauerer: Linux-Kernelarchitektur. Konzepte, Strukturen und Algorithmen von Kernel 2.6. Hanser Fachbuchverlag, München u. a. 2003, ISBN 3-446-22566-8
  • Robert Love: Linux-Kernel-Handbuch. Leitfaden zu Design und Implementierung von Kernel 2.6. Addison-Wesley, München u. a. 2005, ISBN 3-8273-2204-9
  • Jonathan Corbet, Alessandro Rubini, und Greg Kroah-Hartman: Linux Device Drivers. 3. Auflage, O’Reilly. 2005, ISBN 0-596-00590-3

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Commons: Linux (Kernel) – Album mit Bildern, Videos und Audiodateien

Englisch:

Deutsch:

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. COPYING. Abgerufen am 18. August 2017 (englisch).
  2. Reiko Kaps: Linus Torvalds kritisiert den zweiten GPLv3-Entwurf. In: Heise online. 28. Juli 2006. Abgerufen am 30. Oktober 2012.
  3. GNU Linux-libre. Abgerufen am 18. August 2017 (englisch).
  4. Greg Kroah-Hartman: Linux 5.4.1. (abgerufen am 30. November 2019).
  5. Linus Torvalds: RELEASE NOTES FOR LINUX v0.12. In: kernel.org. Abgerufen am 22. April 2017 (englisch).
  6. index : kernel/git/torvalds/linux.git
  7. a b c UNIX/Linux History. Abgerufen am 11. März 2017 (englisch).
  8. Katherine Noyes: Linux 3.8: Hello 2013, Goodbye 386 Chips. In: Linux News. Linux Foundation, 20. Februar 2013, abgerufen am 14. April 2013 (englisch).
  9. PPC/Linux for NuBus Power Macs. sourceforge.net, abgerufen am 12. April 2014 (englisch).
  10. Andres Calderon, Nelson Castillo: Why ARM’s EABI matters. LinuxDevices.com, 14. Mai 2007, abgerufen am 10. April 2019 (englisch).
  11. Pressemitteilung OSDL: Developer's Certificate of Origin, 2004
  12. Linux-Kernel Archive: [RFD] Explicitly documenting patch submission, 23. Mai 2004 (englisch)
  13. Thorsten Leemhuis: Neue Kernel-Serie mit Linux 2.6.11.1 gestartet. In: Heise online. 7. März 2005. Abgerufen am 26. April 2015.
  14. Linus Torvalds: Linux 3.0-rc1. (Nicht mehr online verfügbar.) thread.gmane.org, 30. Mai 2011, archiviert vom Original am 30. November 2016; abgerufen am 16. November 2014 (englisch). i Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/thread.gmane.org
  15. Linus Torvalds: index : kernel/git/torvalds/linux.git. git.kernel.org, 23. Februar 2015, abgerufen am 23. Februar 2015 (englisch).
  16. Linus Torvalds: Linus Torvalds — Google+. plus.google.com, 13. Februar 2015, abgerufen am 23. Februar 2015 (englisch).
  17. Linux 5.0 ist da: Geschwindigkeit zurückerobern und moderner speichern. heise.de/ct. 4. März 2019. Abgerufen am 4. März 2019.
  18. Active kernel releases. kernel.org, abgerufen am 31. Januar 2017 (englisch).
  19. a b c The Linux Kernel Archives. kernel.org, abgerufen am 6. September 2010 (englisch, Versionsübersicht bei kernel.org).
  20. Oliver Diedrich: Happy Birthday, Tux. In: Heise online. 25. August 2006. Abgerufen am 24. Oktober 2014.
  21. a b c d e f Dr. Oliver Diedrich: Die Woche: Linux wird 3.0. In: Heise online. 1. Juni 2011. Abgerufen am 26. April 2015.
  22. Oliver Diedrich: Neuer Firewall-Code für den Linux-Kernel. In: Heise online. 21. Oktober 2013. Abgerufen am 28. Oktober 2013.
  23. LKML: Willy Tarreau: Linux 2.4.37.10 + 2.4 EOL plans – Mitteilung bei der Linux-Kernel Mailing List, vom 6. September 2010, abgerufen am: 16. September 2012 (englisch)
  24. Linux-Kernel 2.6.13 veröffentlicht – Thorsten Leemhuis, bei Heise, am 29. August 2005
  25. Thorsten Leemhuis: Die Woche: Xen hat KVM vorbeiziehen lassen. In: Heise online. 16. Juni 2011. Abgerufen am 24. Oktober 2014.
  26. Jörg Thoma: Linux-Kernel: Updates für Long-Term-Zweige. Golem.de, 4. Mai 2011, abgerufen am 24. Oktober 2014.
  27. Clever schachteln: Das neue Linux-Dateisystem Btrfs im DetailAdmin-Magazin, Ausgabe 04/2009
  28. Dr. Oliver Diedrich: Das Dateisystem Btrfs. In: Heise online. 7. Juli 2009. Abgerufen am 14. August 2016.
  29. Thorsten Leemhuis: Kernel-Log: Entwicklung von 2.6.39 angelaufen. In: Heise online. 22. März 2011. Abgerufen am 26. April 2015.
  30. a b Thorsten Leemhuis: Hauptentwicklungsphase von Linux 3.2 abgeschlossen. In: Heise online. 8. November 2011. Abgerufen am 26. April 2015.
  31. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.34. In: Heise online. 17. Mai 2010. S. 3: Linux 2.6.34: Dateisysteme, Netzwerk. Abgerufen am 30. November 2015.
  32. Thorsten Leemhuis: Kernel-Log – Was 2.6.34 bringt (2): Dateisysteme. In: Heise online. 23. April 2010. Abgerufen am 9. Dezember 2016.
  33. Thorsten Leemhuis: Kernel-Log: Cluster-Dateisystem Ceph in 2.6.34, Kernel- und KVM-Vorträge von den CLT2010. In: Heise online. 22. März 2010. Abgerufen am 9. Dezember 2016.
  34. Thorsten Leemhuis: Kernel-Log – Was 2.6.34 bringt (3): Grafik. In: Heise online. 5. Mai 2010. Abgerufen am 9. Dezember 2016.
  35. Oliver Diedrich: Entwicklung von Linux 2.6.35 läuft an. In: Heise online. 31. Mai 2010. Abgerufen am 9. Dezember 2016.
  36. Thorsten Leemhuis: Eine Flut neuer Stable-Kernel und ein Ausblick auf Linux 2.6.35. In: Heise online. 6. Juli 2010. Abgerufen am 9. Dezember 2016.
  37. Andi Kleen: The longterm Linux 2.6.35.14 kernel is released. lkml.org, 1. August 2011, abgerufen am 7. Mai 2012 (englisch).
  38. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.36. In: Heise online. 21. Oktober 2010. Abgerufen am 17. August 2015.
  39. Thorsten Leemhuis: Kernel-Log: 2.6.36, neue Stable-Kernel, frische Treiber. In: Heise online. 11. August 2010. Abgerufen am 17. August 2015.
  40. Thorsten Leemhuis: Hauptentwicklungsphase des Linux-Kernels 2.6.36 abgeschlossen. In: Heise online. 16. August 2010. Abgerufen am 17. August 2015.
  41. Thorsten Leemhuis: Hauptentwicklungsphase des Linux-Kernel 2.6.37 abgeschlossen. In: Heise online. 1. November 2010. Abgerufen am 15. Februar 2015.
  42. Thorsten Leemhuis: Kernel-Log: Wunderpatch integriert, verbesserte Grafiktreiber am Start. In: Heise online. 7. Januar 2011. Abgerufen am 10. März 2015.
  43. Thorsten Leemhuis: Kernel-Log – Was 2.6.38 bringt (6): Treiber. In: Heise online. 9. März 2011. Abgerufen am 15. Februar 2015.
  44. Thorsten Leemhuis: Kernel-Log: Erster Release Candidate von Linux 2.6.39. In: Heise online. 30. März 2011. Abgerufen am 8. Februar 2015.
  45. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.39. In: Heise online. 19. Mai 2011. Abgerufen am 8. Februar 2015.
  46. Arnd Bergmann: BKL: That's all, folks. git.kernel.org, 25. Januar 2011, abgerufen am 18. August 2017.
  47. Thorsten Leemhuis: Erste Vorabversion von Linux 3.0 erschienen. In: Heise online. 30. Mai 2011. Abgerufen am 24. Januar 2015.
  48. Jörg Thoma: Kernel: Linux 3.0 ist fertig. golem.de, 22. Juli 2011, abgerufen am 6. Januar 2015.
  49. Thorsten Leemhuis: Linux-Kernel 3.0 freigegeben. In: Heise online. 22. Juli 2011. Abgerufen am 6. Januar 2015.
  50. Thorsten Leemhuis: Kernel-Log – Was 3.1 bringt (3): Architektur, Infrastruktur, Virtualisierung. In: Heise online. 17. September 2011. Abgerufen am 6. Januar 2015.
  51. Mirko Dölle: Android-Treiber sollen in Kernel 3.3 einfließen. In: Heise online. 23. Dezember 2011. Abgerufen am 16. November 2014.
  52. Jörg Thoma: Stromsparoption RC6 in Linux-Kernel funktionstüchtig. golem.de, 15. Februar 2012, abgerufen am 21. Mai 2012.
  53. Thorsten Leemhuis: Kernel-Log – Was 3.3 bringt (4): Treiber. In: Heise online. 8. März 2012. Abgerufen am 21. Mai 2012.
  54. Thorsten Leemhuis: Die Neuerungen von Linux 3.4. In: Heise online. 21. Mai 2012. Abgerufen am 21. Mai 2012.
  55. Thorsten Leemhuis: Kernel-Log – Was 3.5 bringt (1): Netzwerk. In: Heise online. 25. Juni 2012. Abgerufen am 27. Juni 2012.
  56. Thorsten Leemhuis: Kernel-Log: Entwicklung von Linux 3.6 läuft. In: Heise online. 2. August 2012. Abgerufen am 11. Mai 2014.
  57. Thorsten Leemhuis: Linux-Kernel 3.7 veröffentlicht. In: Heise online. 11. Dezember 2012. Abgerufen am 13. Dezember 2012.
  58. Thorsten Leemhuis: Kernel-Log – Was 3.8 bringt (1): Dateisysteme und Storage. In: Heise online. 21. Januar 2013. Abgerufen am 16. Februar 2013.
  59. Thorsten Leemhuis: Kernel-Log – Was 3.8 bringt (2): Infrastruktur. In: Heise online. 8. Februar 2013. Abgerufen am 16. Februar 2013.
  60. a b Jörg Thoma: Linux Kernel: Torvalds schließt Merge-Fenster für Linux 3.9. golem.de, 4. März 2013, abgerufen am 6. März 2013.
  61. Meta SoC Processors (Memento vom 15. März 2013 im Internet Archive) – Seite bei Imagination Technologies, abgerufen am 7. März 2013 (englisch).
  62. DesignWare ARC 700 Processor Core Family – Seite bei Synopsys, abgerufen am 7. März 2013 (englisch).
  63. Hans-Joachim Baader: Linux-Kernel 3.9 tritt in die Testphase ein. Pro-Linux, 4. März 2013, abgerufen am 7. März 2013.
  64. Thorsten Leemhuis: Kernel-Log – Was 3.10 bringt (4): Treiber. In: Heise online. 28. Juni 2013. Abgerufen am 10. Juli 2013.
  65. Thorsten Leemhuis: Die Neuerungen von Linux 3.9. In: Heise online. 29. April 2013. S. 3: Fazit, Trends, Statistik. Abgerufen am 10. Juli 2013.
  66. Thorsten Leemhuis: Die Neuerungen von Linux 3.10. Heise, 1. Juli 2013, abgerufen am 10. Juli 2013.
  67. Thorsten Leemhuis: Kernel-Log – Was 3.11 bringt (2): Infrastruktur. Heise, 19. August 2013, abgerufen am 20. August 2013.
  68. Thorsten Leemhuis: "Linux for Workgroups": Funktionsumfang von Linux 3.11 steht. Heise, 15. Juli 2013, abgerufen am 13. März 2018.
  69. Thorsten Leemhuis: Linux 3.12 bringt Optimus- und SYN-Proxy-Unterstützung. Heise, 17. September 2013, abgerufen am 18. September 2013.
  70. Thorsten Leemhuis: Die Neuerungen von Linux 3.12: Netzwerk. Heise, 4. November 2013, abgerufen am 6. November 2013.
  71. Thorsten Leemhuis: Kernel-Log – Was 3.12 bringt (1): Dateisysteme & Storage. Heise, 8. Oktober 2013, abgerufen am 6. November 2013.
  72. Thorsten Leemhuis: Die Neuerungen von Linux 3.13. Heise online, 20. Januar 2014, abgerufen am 20. Januar 2014.
  73. Thorsten Leemhuis: Kernel-Log – Was 3.13 bringt (5): Grafiktreiber. Heise online, 10. Januar 2014, abgerufen am 20. Januar 2014.
  74. Thorsten Leemhuis: Kernel-Log – Was 3.13 bringt (1): Dateisysteme und Storage. Heise online, 10. Dezember 2013, abgerufen am 20. Januar 2014.
  75. a b Jörg Thoma: Prozessfristen: Linux 3.14 erhält Deadline Scheduler. golem.de, 31. März 2014, abgerufen am 31. März 2014.
  76. Peter Siering: Xen 4.4: virtuelle Maschinen für ARM. heise.de, 10. März 2014, abgerufen am 11. März 2014.
  77. Thorsten Leemhuis: Kernel-Log – Was 3.15 bringt (1): Dateisysteme und Storage. heise.de, 6. Mai 2014, abgerufen am 6. Mai 2014.
  78. Thorsten Leemhuis: Die Neuerungen von Linux 3.16. heise.de, 4. August 2014, abgerufen am 17. August 2014.
  79. Thorsten Leemhuis: Die Neuerungen von Linux 3.17. heise.de, 6. Oktober 2014, abgerufen am 10. November 2014.
  80. Hans-Joachim Baader: Linux-Kernel 3.18 freigegeben. Pro-Linux, 8. Dezember 2014, abgerufen am 8. Dezember 2014.
  81. Thorsten Leemhuis: Linux 3.19 freigegeben: HSA-Support für AMD-Chips. Heise online, 9. Februar 2015, abgerufen am 9. Februar 2015.
  82. Jörg Thoma: Linux 3.19: Mehr für die Grafik und für das Netzwerk. golem.de, 9. Februar 2015, abgerufen am 9. Februar 2015.
  83. Zeitgemäße Linux-IPCLinux-Magazin, Ausgabe 02/2015
  84. Thorsten Leemhuis: Linux-Kernel macht Versionssprung auf 4.0. heise.de, 23. Februar 2015, abgerufen am 23. Februar 2015.
  85. Jörg Thoma: Version 4.0 patcht sich selbst im laufenden Betrieb. golem.de, 23. Februar 2015, abgerufen am 23. Februar 2015.
  86. Thorsten Leemhuis: Linux 4.1 freigegeben: Ext4 verschlüsselt jetzt selbst. heise.de, 22. Juni 2015, abgerufen am 22. Juni 2015.
  87. Thorsten Leemhuis: Linux 4.2-rc1: Neuer Grafiktreiber von AMD integriert. heise.de, 6. Juli 2015, abgerufen am 19. Juli 2015.
  88. Thorsten Leemhuis: Linux-Kernel 4.3 wird neue AMD- und Intel-Grafikprozessoren unterstützen. heise.de, 5. September 2015, abgerufen am 15. September 2015.
  89. Thorsten Leemhuis: Linux 4.3 wird IPv6-Unterstützung standardmäßig nutzen. heise.de, 14. September 2015, abgerufen am 15. September 2015.
  90. Greg Kroah-Hartman: The Linux 4.4 kernel will be the next LTS (long term support) release... Greg Kroah-Hartman, 28. Oktober 2015, abgerufen am 2. November 2015 (englisch).
  91. Thorsten Leemhuis: Linux 4.4 freigegeben: Neue Grafiktreiber und Optimierungen für SSDs. heise.de, 11. Januar 2016, abgerufen am 13. August 2016.
  92. Sebastian Grüner: Kernel: Linux 4.4 erscheint mit Grafiktreiber für Raspberry Pi. golem.de, 11. Januar 2016, abgerufen am 13. August 2016.
  93. Thorsten Leemhuis: Linux 4.5: Verbesserte 3D-Treiber und reibungslose Verbindungswechsel. heise.de, 25. Januar 2016, abgerufen am 13. August 2016.
  94. Ferdinand Thommes: Kernel: Linux 4.5-rc1 wertet AMDGPU mit Powerplay auf. golem.de, 11. Januar 2016, abgerufen am 13. August 2016.
  95. Thorsten Leemhuis: Die Neuerungen von Linux 4.5. heise.de, 14. März 2016, abgerufen am 15. Mai 2016.
  96. Ferdinand Thommes: Kernel: Linux 4.6-rc1 mit neuem Dateisystem OrangeFS. golem.de, 28. März 2016, abgerufen am 13. August 2016.
  97. Thorsten Leemhuis: Linux 4.6 wird 3D-Beschleunigung aktueller GeForce-Chips unterstützen. heise.de, 29. März 2016, abgerufen am 15. Mai 2016.
  98. Thorsten Leemhuis: Linux 4.7 soll AMDs neue Radeon-Grafikkarten unterstützen. heise.de, 30. Mai 2016, abgerufen am 2. Juli 2016.
  99. Ferdinand Thommes: LLinux 4.7-rc1 unterstützt AMDs Polaris. golem.de, 30. Mai 2016, abgerufen am 12. Dezember 2016.
  100. Thorsten Leemhuis: Linux 4.7 vermeidet Netzwerk-Latenzen und unterstützt SMR-Festplatten besser. heise.de, 15. Juni 2016, abgerufen am 15. Juni 2016.
  101. Thorsten Leemhuis: Linux 4.7 freigegeben: RX-480-Treiber und verbesserte Sicherheit. heise.de, 25. Juli 2016, abgerufen am 18. August 2016.
  102. Thorsten Leemhuis: Linux 4.8 bringt Treiber für neue ARM-, Intel- und Nvidia-Grafikprozessoren. heise.de, 8. August 2016, abgerufen am 16. August 2016.
  103. Jörg Thoma: Betriebssysteme: Linux 4.8 übertaktet AMD-Grafikkarten. golem.de, 8. August 2016, abgerufen am 16. August 2016.
  104. Thorsten Leemhuis: Linux 4.9 wird Sicherheit verbessern und neue Treiber bringen. heise.de, 17. Oktober 2016, abgerufen am 18. Oktober 2016.
  105. Ferdinand Thommes: Kernel: Linux 4.9rc1 erscheint mit Protokoll für Project-Ara-Module. golem.de, 17. Oktober 2016, abgerufen am 18. Oktober 2016.
  106. Hans-Joachim Baader: Erste Vorschau auf Linux-Kernel 4.10. pro-linux.de, 26. Dezember 2016, abgerufen am 5. November 2017.
  107. Thorsten Leemhuis: Linux 4.10 Neue Wege zur Grafikbeschleunigung in virtuellen Maschinen. heise.de, 17. Januar 2017, abgerufen am 5. November 2017.
  108. Hans-Joachim Baader: Linux-Kernel 4.10 freigegeben. In: pro-linux.de. 19. Februar 2017, abgerufen am 19. Februar 2017.
  109. Linux-Kernel 4.11: Längere Akkulaufzeit durch NVMe-StromspartechnikHeise, am 6. März 2017
  110. Thorsten Leemhuis: Die Neuerungen von Linux 4.11. heise.de, 16. April 2017, abgerufen am 5. November 2017.
  111. Thorsten Leemhuis: Die Neuerungen von Linux 4.12. heise.de, 3. Juli 2017, abgerufen am 23. Juli 2017.
  112. Thorsten Leemhuis: Die Neuerungen von Linux 4.13. heise.de, 4. September 2017, abgerufen am 24. September 2017.
  113. Greg Kroah-Hartman: As no one seemed to make 4.9 blow up too badly, let's try this again! plus.google.com, 17. Juni 2017, abgerufen am 17. Juni 2017 (englisch).
  114. Thorsten Leemhuis: Die Neuerungen von Linux 4.14. heise.de, 13. November 2017, abgerufen am 18. März 2018.
  115. Thorsten Leemhuis: Die Neuerungen von Linux 4.15. heise.de, 28. Januar 2018, abgerufen am 18. März 2018.
  116. Thorsten Leemhuis: Die Neuerungen von Linux 4.17. heise.de, 4. Juni 2018, abgerufen am 4. Juni 2018.
  117. Thorsten Leemhuis: Linux 4.18 freigegeben. heise.de, 13. August 2018, abgerufen am 13. August 2018.
  118. Thorsten Leemhuis: Kernel-Log: Linux 4.19: Flackerfrei starten und Strom sparen. heise.de, 12. Oktober 2018, abgerufen am 24. Oktober 2018.
  119. Thorsten Leemhuis: Linux 4.19: Schöner starten und bereit für das WLAN von Morgen. heise.de, 22. Oktober 2018, abgerufen am 24. Oktober 2018.
  120. Thorsten Leemhuis: Linux 4.20 freigegeben: Performance-Optimierungen und neue Treiber. heise.de, 12. Dezember 2018, abgerufen am 24. Dezember 2018.
  121. Thorsten Leemhuis: Linux 5.0 ist da: Geschwindigkeit zurückerobern und moderner speichern. heise.de, 4. März 2019, abgerufen am 24. Juni 2019.
  122. Thorsten Leemhuis: Linux 5.1: Performance-Verbesserungen und neue Speichertechnik. heise.de, 6. Mai 2019, abgerufen am 24. Juni 2019.
  123. Linux 5.2 freigegeben: Änderungsrekord und Geschwindigkeitsverbesserungenc't Magazin, am 9. Juli 2019
  124. Thorsten Leemhuis: Linux 5.3 freigegeben: Prioritäten deckeln und Trouble für Nvidia. Abgerufen am 26. November 2019.
  125. Thorsten Leemhuis: Linux 5.4 freigegeben: exFAT-Support und Einschränkungen für Root. Abgerufen am 26. November 2019.
  126. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.25. Daten und Zahlen zu den jüngsten Versionen des Linux-Kernels. Heise online, 17. April 2008, S. 6, abgerufen am 28. September 2010.
  127. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.31. Daten und Zahlen zu den jüngsten Versionen des Linux-Kernels. Heise online, 10. September 2009, S. 6, abgerufen am 28. September 2010.
  128. Thorsten Leemhuis: Die Neuerungen von Linux 2.6.38. Daten und Zahlen zu den jüngsten Versionen des Linux-Kernels. Heise online, 15. März 2011, S. 8, abgerufen am 15. März 2011.
  129. Thorsten Leemhuis: Die Neuerungen von Linux 3.0. Daten und Zahlen zu den jüngsten Versionen des Linux-Kernels. Heise online, 22. Juli 2011, S. 4, abgerufen am 25. Juli 2011.
  130. Dr. Oliver Diedrich: The Next Generation – Linux 2.6: Fit für die Zukunft, in der c't 24/2003 (am 17. November 2003), Seite 194
  131. Marcel Hilzinger: Con Kolivas meldet sich mit neuem Scheduler zurück. Linux-Magazin, 2. September 2009, abgerufen am 27. April 2014.
  132. Richard M. Stallman: Linux, GNU, and freedom. gnu.org, 10. Juli 2014, abgerufen am 12. Februar 2015 (englisch).
  133. Linus Torvalds: GPL V3 and Linux – Dead Copyright Holders. 25. Januar 2006, abgerufen am 24. März 2009 (englisch, Nachricht auf der Linux-Kernel-Mailingliste).
Dieser Artikel wurde am 23. Oktober 2005 in dieser Version in die Liste der lesenswerten Artikel aufgenommen.