Lubell-Yamamoto-Meshalkin-Ungleichung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Lubell-Yamamoto-Meshalkin-Ungleichung oder kurz LYM-Ungleichung ist ein Resultat der Diskreten Mathematik. Sie ist engstens mit dem bekannten Satz von Sperner (nach Emanuel Sperner, 1905–1980) verknüpft, den sie sogar verallgemeinert. Ebenso wie bei diesem geht es auch bei der LYM-Ungleichung um die Darstellung des Zusammenhangs zwischen den Antiketten endlicher Potenzmengen und den Binomialkoeffizienten.

Die Ungleichung wird den drei Mathematikern Lubell (1966), Yamamoto (1954) und Meshalkin (1963) zugeschrieben[1][2], welche sie unabhängig voneinander fanden. Für die korrekte historische Einordnung muss jedoch erwähnt werden, dass der ungarische Mathematiker Béla Bollobás im Jahre 1965 – etwa zeitgleich mit Lubell und Meshalkin – eine ganz ähnliche Ungleichung publiziert hat. Tatsächlich ist die Ungleichung von Bollobás im Vergleich zur LYM-Ungleichung sogar noch allgemeiner.

In diesem Zusammenhang ist erwähnenswert, dass Emanuel Sperner selbst in seinem Artikel im Jahr 1928 als wesentliche Argumentationshilfe zwei Ungleichungen benutzt und beweist, von denen sich erwiesen hat[3][4], dass sie ihrerseits logisch äquivalent zur LYM-Ungleichung sind.

Zusammen mit dem Satz von Sperner bilden die genannten Ungleichungen einen wesentlichen Ausgangspunkt für die Entwicklung der sogenannten Spernertheorie. Diese hat sich in den letzten Jahrzehnten zu einem eigenen Zweig der Diskreten Mathematik herausgebildet[5]. Im Rahmen dieser Entwicklung hat sich insbesondere ergeben, dass die Lubell-Yamamoto-Meshalkin-Ungleichung auch aufgefasst werden kann als Folge einer allgemeinen Identität, der sogenannten Ahlswede-Zhang-Identität.

Die Ungleichungen[Bearbeiten | Quelltext bearbeiten]

Die LYM-Ungleichung[Bearbeiten | Quelltext bearbeiten]

Gegeben sei eine endliche Menge     mit     Elementen, wobei     eine natürliche Zahl sei, und weiter ein Mengensystem     von Teilmengen von , welche paarweise nicht ineinander enthalten sind, also eine Antikette der Potenzmenge     bilden.

Weiter sei für       die Anzahl der in     vorkommenden Mengen mit exakt     Elementen. Dann gilt:

Den Satz von Sperner gewinnt man aus der LYM-Ungleichung, indem man auf beiden Seiten der Ungleichung mit dem größten Binomialkoeffizienten     multipliziert und einbezieht, dass die Summe der     gleich der Anzahl der in     vorkommenden Mengen ist.

Die Ungleichung von Bollobás[Bearbeiten | Quelltext bearbeiten]

Gegeben seien zwei endliche Folgen endlicher Mengen     und     , welche den folgenden zwei Vorschriften genügen:

  1. ()
  2. ( ; )

Dann gilt:

Die LYM-Ungleichung gewinnt man aus der Ungleichung von Bollobás, indem man     abzählt in der Form

()

und dann für     jeweils     setzt.

Die beiden Spernerschen Ungleichungen[Bearbeiten | Quelltext bearbeiten]

Gegeben sei eine endliche Menge     mit     Elementen, wobei     eine natürliche Zahl sei, und zudem ein Mengensystem     von Teilmengen von     , welche alle dieselbe Mächtigkeit     haben.

Sei weiterhin     das Mengensystem derjenigen Teilmengen     derart, dass für ein       und zudem     ist[6] und sei     das Mengensystem derjenigen Teilmengen     derart, dass für ein       und zudem     ist[7].

Dann gelten die folgenden beiden Ungleichungen:

Erste Spernersche Ungleichung
Zweite Spernersche Ungleichung

Die Ahlswede-Zhang-Identität[Bearbeiten | Quelltext bearbeiten]

Diese Identität (auch AZ-Identität genannt, in der englischsprachigen Literatur als AZ identity bezeichnet[8][9]) geht auf die beiden Mathematiker Rudolf Ahlswede (1938–2010) und Zhen Zhang zurück. Sie stellt eine Verschärfung der LYM-Ungleichung dar und lässt sich formulieren wie folgt:

Gegeben sei eine endliche Menge     mit     Elementen (   ) und dazu ein nicht-leeres Mengensystem     von nicht-leeren Teilmengen von , also eine nicht-leere Teilmenge der reduzierten Potenzmenge   . Weiter sei für     :

Dann gilt:

Ist     eine Antikette von und     , so ist   . Also ist     in der obigen Summe enthalten, was zeigt, dass die AZ-Identität die LYM-Ungleichung unmittelbar impliziert.

Quellen[Bearbeiten | Quelltext bearbeiten]

Artikel und Originalarbeiten[Bearbeiten | Quelltext bearbeiten]

  • R. Ahlswede ; Z. Zhang: An identity in combinatorial extremal theory. In: Advances in Mathematics. Band 80, 1990, S. 137–151 (ams.org).
  • R. Ahlswede ; N. Cai: A generalization of the AZ identity. In: Combinatorica. Band 13, 1993, S. 241–247 (ams.org).
  • D. J. Kleitman: On an extremal property of antichains in partial orders. The LYM property and some of its implications and applications in: M. Hall and J. H. van Lint (eds.): Combinatorics (Math. Centre Tracts 55). Amsterdam 1974, S. 77–90 (ams.org).
  • L.D. Meshalkin: Generalization of Sperner's theorem on the number of subsets of a finite set. In: Theory of Probability and its Applications. Band 8, 1963, S. 203–204.
  • Hans-Josef Scholz: Über die Kombinatorik der endlichen Potenzmengen im Zusammenhang mit dem Satz von Sperner. Dissertation, Universität Düsseldorf (1987).
  • Koichi Yamamoto: Logarithmic order of free distributive lattice. In: Journal of the Mathematical Society of Japan. Band 6, 1954, S. 343–353 (ams.org).
  • Douglas B. West: Extremal problems in partially ordered sets in: Ivan Rival (ed.): Ordered Sets. Proceedings of the NATO advanced study institute held at Banff, Canada, August 28 to September 12, 1981. D. Reidel Publishing Company, Dordrecht [u. a.] 1982, ISBN 90-277-1396-0, S. 473–521 (ams.org).

Monographien[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise und Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. Curtis Greene, Daniel J. Kleitman: Proof techniques in the theory of finite sets in: Studies in Combinatorics. Hrsg.: Gian-Carlo Rota. S. 35.
  2. Martin Aigner: Combinatorial Theory. S. 425.
  3. D. J. Kleitman in: M. Hall and J. H. van Lint (eds.): Combinatorics (Math. Centre Tracts 55). Amsterdam 1974, S. 77 ff.
  4. Hans-Josef Scholz: Über die Kombinatorik der endlichen Potenzmengen im Zusammenhang mit dem Satz von Sperner. S. 19.
  5. Konrad Engel: Sperner Theory.
  6. Mengensystem der unteren Nachbarn von  
  7. Mengensystem der oberen Nachbarn von  
  8. R. Ahlswede, Z. Zhang: An identity in combinatorial extremal theory. In: Advances in Mathematics. Band 80, 1990, S. 137–151.
  9. Konrad Engel: Sperner Theory (= Encyclopedia of Mathematics and its Applications. Band 65). Cambridge University Press, Cambridge (u. a.) 1997, ISBN 0-521-45206-6, S. 18 ff.