Mandelbulb

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Mandelbulb-Bild von: v8 ↦ v + c

Das Mandelbulb-Fraktal ist ein dreidimensionales Fraktal. Es wurde 2009 von Daniel White und Paul Nylander konstruiert. Dazu wurde ein herkömmliches Modelbrot einer sphärischen Koordinatentransformation unterzogen.[1]

Mathematik[Bearbeiten | Quelltext bearbeiten]

Flug um die Mandelbulb

Eine dreidimensionale Mandelbrot-Menge in Normalenform existiert so nicht, denn es gibt kein 3-dimensionales Analogon der komplexen Ebene (sondern nur höher-dimensionale Zahlensysteme wie Quaternionen oder Dimensionen anderen hyperkomplexen Zahlen).

Whites und Nylanders Formel für den n-ten Exponenten des Vektors in einem kartesischen Koordinatensystem (3) lautet

unter Verwendung von

,
, und
.

Die Mandelbulb ist sodann definiert als die Menge der c-Werte in 3 für die der Orbit von unter der Iteration begrenzt ist[2]. Für n > 3 ergibt sich eine 3-dimensionale birnenähnliche Struktur mit fraktalen Oberflächendetails und eine Anzahl an "Lappen" abhängig von n. Viele Graphikrenderings nutzen für n den Wert 8. Die Gleichungen können in rationale Polynome vereinfacht werden, wenn n ungerade ist. Für den Fall n = 3 kann die in die folgende, vereinfachte Form umgeformt werden:

.

Allgemeiner kann man entsprechende Fraktale (neben n auch von p und q abhängend) für die Abbildung

konstruieren, wobei p und q nicht gleich n sein müssen, um |vn| = |v|n zu erfüllen. Noch allgemeinere Fraktale können mit der Iteration

gefunden werden.

Ähnlichkeit zur Mandelbrot-Menge[Bearbeiten | Quelltext bearbeiten]

Ähnlichkeit zur Menge visualisiert

Durch gewisse Transformationen des Mandelbulb-Fraktals lässt sich eine Ähnlichkeit zur Mandelbrot-Menge erahnen. Wenn man im Fall n = 2 das Fraktal in der Mitte durchschneidet, erkennt man die klassische Mandelbrot-Menge.

Die Julia-Menge am Nullpunkt der Mandelbrot-Menge entspricht einer idealen Kreisfläche. Analog dazu ist die Julia-Menge am Nullpunkt der Mandelbulb eine ideale Kugel. Diese Julia-Mengen unterscheiden sich hier also nur in der Anzahl der Dimensionen voneinander.

Trivia[Bearbeiten | Quelltext bearbeiten]

  • Im 2014 erschienenen Computeranimationsfilm Baymax findet eine Szene im Zentrum eines Wurmloches statt, das dem stilisierten Inneren einer Mandelbulb ähnelt.[3]
  • Ein Alien im Science-Fiction-Horrorfilm Auslöschung als Teil einer Mandelbulb.[4]
  • Das Geisterreich der Kerht im Webcomic Unsounded wird als goldene Mandelbulb dargestellt.[5]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weiterführende Links[Bearbeiten | Quelltext bearbeiten]

Commons: Mandelbulb – Album mit Bildern, Videos und Audiodateien

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Richard Rosenman: Hypercomplex Fractals. BUGMAN, 7. März 2009, abgerufen am 9. Juli 2020 (englisch).
  2. Mandelbulb: The Unravelling of the Real 3D Mandelbrot Fractal. siehe "Formel"-Bereich
  3. David Hutchins, Olun Riley, Jesse Erickson, Alexey Stomakhin, Ralf Habel, Michael Kaschalk: Big Hero 6 | ACM SIGGRAPH 2015 Talks. Abgerufen am 9. Juli 2020 (englisch).
  4. Emily Gaudette: What Is Area X and the Shimmer in 'Annihilation'? VFX Supervisor Explains the Horror Film's Mathematical Solution. NewsWeek, 26. Februar 2018, abgerufen am 26. Februar 2018 (englisch).
  5. Unsounded. Abgerufen am 9. Juli 2020 (englisch).