Minkowski-Raum

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Der Minkowski-Raum, benannt nach Hermann Minkowski, ist ein vierdimensionaler Raum, in dem sich die Relativitätstheorie elegant formulieren lässt. Um 1907 erkannte Minkowski, dass die Arbeiten von Hendrik Antoon Lorentz (1904) und Albert Einstein (1905) zur Relativitätstheorie in einem nicht-euklidischen Raum verstanden werden können. Er vermutete, dass Raum und Zeit in einem vierdimensionalen Raum-Zeit-Kontinuum miteinander verbunden sind. Dies wird auch als Minkowski-Welt bezeichnet.

Drei seiner Koordinaten sind die des Euklidischen Raums; dazu kommt eine vierte Koordinate für die Zeit. Der Minkowski-Raum ist also analog wie ein euklidischer Raum aufgebaut. Wegen der unterschiedlichen Struktur von Raum- und Zeitkoordinaten (siehe unten) sind beide Räume aber wesentlich verschieden.

In der Mathematik betrachtet man auch Minkowski-Räume beliebiger Dimension.

Reelle Definition[Bearbeiten | Quelltext bearbeiten]

Der Minkowski-Raum ist ein vierdimensionaler reeller Vektorraum, auf dem das Skalarprodukt nicht durch den üblichen Ausdruck, sondern durch eine nichtausgeartete Bilinearform vom Index 1 gegeben ist. Diese ist also nicht positiv definit. Man ordnet den Minkowski-Vierervektoren (sog. „Ereignissen“) vier-komponentige Elemente zu und setzt in der Regel

wobei die Koordinate ebenfalls reell definiert ist: sie geht mit Hilfe der Lichtgeschwindigkeit aus der Zeitkoordinate hervor.

Statt der hier gewählten Signatur die in der allgemeinen Relativitätstheorie heute am häufigsten verwendet wird, wird – vor allem in der neueren Literatur – oft die physikalisch äquivalente umgekehrte Signatur gewählt. Die Zeit wird zuweilen auch als vierte statt als nullte Koordinate geführt.

Alternativ kann man das innere Produkt zweier Elemente des Minkowski-Raumes auch als Wirkung des metrischen Tensors auffassen:

indem man kontravariante und kovariante Vektorkomponenten unterscheidet (obere bzw. untere Indizes, z. B. aber ).

Definition mit imaginärer Zeit[Bearbeiten | Quelltext bearbeiten]

In manchen älteren Lehrbüchern [1] wird eine äquivalente Notation verwendet, die die gemischte Signatur des inneren Produkts durch Verwendung einer imaginären Zeitachse vermeidet. Durch Setzen von können die mit positiv definiter, euklidischer Metrik verwendet werden und man erhält dennoch die korrekte Minkowski-Signatur

Ein scheinbarer Vorteil ist, dass man nicht zwischen kontravarianten und kovarianten Komponenten unterscheiden muss, sondern wie in der üblichen, elementaren Vektorrechnung arbeiten kann. Der Wechsel von Minkowski-Signatur auf euklidische Signatur der Metrik wird dabei als Wick-Rotation bezeichnet.

Lorentztransformationen[Bearbeiten | Quelltext bearbeiten]

Hauptartikel: Lorentztransformation

Die Lorentztransformationen spielen eine den Drehungen um den Koordinatenursprung in euklidischen Räumen analoge Rolle: Es sind diejenigen homogen-linearen Transformationen, die das Objekt und damit das innere Produkt des Minkowskiraums invariant lassen, was die Bedeutung des Minkowskiraums in der speziellen Relativitätstheorie begründet. Auch eignet sich dieser Formalismus zur Verallgemeinerung in der allgemeinen Relativitätstheorie. Im Gegensatz zu den Drehgruppen haben die Lorentztransformation auch die Kausalstruktur der Systeme als Folge:

Kausalstruktur (raumartige, zeitartige und lichtartige Vektoren)[Bearbeiten | Quelltext bearbeiten]

Die Elemente des Minkowski-Raums können nach dem Vorzeichen von in drei Klassen eingeteilt werden:

  • zeitartige Minkowski-Vektoren (das entspricht kausal durch „massive Körper“ beeinflussbaren „Ereignispaaren“[2]),
  • raumartige Minkowski-Vektoren (kausal nicht beeinflussbare Ereignispaare)
  • – als Grenzfall – lichtartige Minkowski-Vektoren (kausal nur durch Lichtsignale beeinflussbare Ereignispaare).

Die Invarianz dieser Einteilung bei allen Lorentz-Transformationen folgt aus der Invarianz des Lichtkegels. Dabei beschreibt das zeitartige Innere des Lichtkegels die kausale Struktur: mögliche Ursachen eines Ereignisses liegen in der „Vergangenheit“ (Rückwärtsbereich des Lichtkegel-Inneren), mögliche Auswirkungen in der „Zukunft“ (Vorwärtsbereich des Lichtkegel-Inneren); außerdem gibt es noch den raumartigen Außenbereich des Lichtkegels, der mit dem betrachteten Ereignis im Zentrum gar nicht „kausal zusammenhängt“, weil dazu Informationsübertragung mit Überlichtgeschwindigkeit nötig wäre.

Minkowski-Räume in der Mathematik[Bearbeiten | Quelltext bearbeiten]

In der Mathematik, speziell der Differentialgeometrie betrachtet man auch Minkowski-Räume beliebiger Dimension. Diese sind -dimensionale Vektorräume mit einer symmetrischen Bilinearform der Signatur . In einer geeigneten Basis lässt sich als

,

darstellen, diese Form bezeichnet man als Lorentzform.

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Francesco Catoni: The mathematics of Minkowski space-time. Birkhäuser, Basel 2008, ISBN 978-3-7643-8613-9
  • John W. Schutz: Independent axioms for Minkowski space-time. Longman, Harlow 1997, ISBN 0-582-31760-6

Weblinks[Bearbeiten | Quelltext bearbeiten]

 Wikibooks: Spezielle Relativitätstheorie – Lern- und Lehrmaterialien

Einzelnachweise und Fußnoten[Bearbeiten | Quelltext bearbeiten]

  1. Siehe etwa das Lehrbuch der Theoretischen Physik von Friedrich Hund, Band II.
  2. Dass es sich um Ereignispaare handelt, wird klar, wenn man als infinitesimale Differenzen verwendet.