Minoische Eruption

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche
Die Insel Santorin heute: Die vulkanische Caldera wird aus der Hauptinsel, der Insel Thirasia im Westen und der winzigen Felsinsel Aspronisi im Südwesten gebildet. In der Mitte des Inselrunds liegen die beiden erst nach der Minoischen Eruption entstandenen Inseln Palea Kameni und Nea Kameni.

Als Minoische Eruption (auch Thera- oder Santorin-Eruption) wird der spätbronzezeitliche Ausbruch der ägäischen Vulkaninsel Thera (heute Santorin) bezeichnet, der im 17. oder 16. Jahrhundert v. Chr. die eng mit der Minoischen Kultur verbundene Siedlung Akrotiri (moderner Name) auf Santorin begrub. Seine direkten Auswirkungen sind umstritten; die bis in die 1960er Jahre oft vertretene Meinung, er habe den Untergang der minoischen Kultur auf Kreta herbeigeführt,[1] wird heute abgelehnt.[2] Die bei der Eruption ausgestoßenen Pyroklastika lassen sich in archäologischen Fundstellen im gesamten östlichen Mittelmeer finden und bieten so einen Fixpunkt in der Stratigraphie. Die Datierung der Eruption ist umstritten; zwischen den naturwissenschaftlich und den historiografisch ermittelten Daten liegen etwa 100 Jahre.

Der Vulkan von Santorin[Bearbeiten]

Der Vulkan von Santorin ist ein Ergebnis plattentektonischer Vorgänge. Er gehört zu einem vulkanischen Inselbogen in der südlichen Ägäis, über einer Subduktionszone, die durch den Zusammenprall der Afrikanischen mit der Eurasischen Platte entsteht.

Der Kern der Insel besteht aus metamorphen Gesteinen im Alter von etwa 200–40 Millionen Jahren. Sie sind heute an der Oberfläche nur noch an der höchsten Erhebung, dem Profitis Ilias (567 m) sichtbar, liegen aber an vier Stellen der südlichen Insel unter jüngeren Schichten. Der Rest der Insel besteht aus vulkanischem Gestein, das bei mindestens zwölf mittleren und größeren und weiteren kleineren Eruptionen seit dem Pleistozän, also in den letzten 1,8 Millionen Jahren, entstanden ist. Dabei handelt es sich weit überwiegend um pyroklastische Ablagerungen, es lassen sich jedoch durch das ganze Gebiet fünf Lavaströme nachweisen.[3] Altersbestimmungen der Gesteine lassen ein Intervall von 20.000 Jahren zwischen größeren und 5000 Jahren zwischen kleinen Ausbrüchen vermuten.[3]

Moderne Untersuchungen zeigten, dass die Inselgruppe bereits in minoischer Zeit annähernd ihre heutige Form hatte (einschließlich einer Insel in der Mitte der Caldera), die sie bereits durch die Kap-Riva-Eruption vor etwa 21.000 Jahren erhielt.[2]

Umfang der Eruption[Bearbeiten]

Verbreitungskarte theräischer Tephra nach der Minoischen Eruption

Der griechische Archäologe Spyridon Marinatos publizierte 1939 eine Theorie, nach der der Ausbruch des Thera-Vulkans zum Untergang der minoischen Kultur auf Kreta geführt habe.[1] Für Marinatos musste der Thera-Ausbruch dem des indonesischen Vulkans Krakatau geähnelt haben, der im Jahr 1883 rund 36.000 Menschen das Leben kostete. Neben einem Ascheregen, der in einem Umkreis von mehreren hundert Kilometern den Himmel verdunkelt hatte, war für ihn besonders die aus der Eruption resultierende Flutwelle eine wichtige Parallele. Mit bis zu 15 m Höhe hatte die vom Krakatau ausgelöste Welle 1883 die Küste der benachbarten Inseln überspült und zahlreiche Städte zerstört. Marinatos nahm eine ähnlich verheerende Überflutung der Küsten Kretas durch die Thera-Eruption an und vermutete darin die Ursache für den Untergang der minoischen Kultur.

Mittlerweile wurden Spuren von Flutwellen an einigen Orten an der Nordostküste Kretas identifiziert. So in Pseira, Palaikastro und Papadiokambos.[4] Sogar an der Küste Israels wurden Tsunamispuren gefunden und datiert.[5] Die Ausgrabungen von Palaikastro zeigen, dass der ganze Ort überschwemmt und zerstört wurde, später aber zumindest teilweise wieder aufgebaut wurde; die minoische Kultur also noch weiter bestand.[6]

Das von Marinatos angenommene Ausmaß der Eruption – er vermutete die vierfache Menge an Tephra (80-120 km³) im Vergleich zum Krakatau-Ausbruch (20-30 km³), was einer Eruption der Stärke 7 auf dem Vulkanexplosivitätsindex (VEI) entspräche – wurde im Laufe der Jahre nach unten korrigiert. Da auch die Dicke der Ascheschichten auf den Nachbarinseln Marinatos' Annahme nicht bestätigte[7], nahm man eine kleinere Eruption (30 km³) der Stärke VEI 6 an. Auch eine Pollenanalyse von Sedimentschichten vor und nach dem Thera-Ausbruch deuteten auf minimale Veränderungen der regionalen Vegetation und somit eine verhältnismäßig kleine Eruption hin.[8]

Im Jahr 2002 wurden jedoch Ascheschichten gefunden, die auf Grund ihrer Dicke als Hinweis auf eine mehr als doppelt so starke Eruption (bis zu 100 km³ Tephra) verstanden werden.[9] Weitere Untersuchungen des Meeresbodens rund um Santorin im Jahre 2006 ermittelten Ablagerungen von pyroklastischen Strömen in erheblicher Dicke. Die darauf basierende neue Schätzung ergab nun ein Gesamtvolumen von 60 km³ Magma, was die Stärke nach VEI wieder sicher auf 7 erhöhte.[10]

Phasen der Eruption[Bearbeiten]

Der Ausbruch wird heute in vier größere Phasen eingeteilt.[11] Ihm gingen einige Erdbeben voran. Die Bewohner verließen daraufhin die Insel. Sie hatten genügend Zeit, ihre Wertsachen mitzunehmen. Bei den Ausgrabungen der Stadt Akrotiri wurden weder Leichen noch Schmuck oder aufwendige Werkzeuge gefunden. Kurz nach den Erdbeben wurde Akrotiri offenbar wieder aufgesucht. Man versuchte unzerstörte Pithoi (Vorratsbehälter) und Möbelstücke zu bergen, einsturzgefährdete Wände niederzureißen und Baumaterialien für eine Wiederverwendung zu sortieren.[12]

Die Bergungsoperation wurde jedoch abgebrochen, die Helfer flohen erneut und ließen die schon bereitgestellten Vorratsbehälter und Möbel zurück. Als Ursache gilt der erste Fall von Pyroklastika. Es handelte sich nur um geringe Mengen von vulkanischen Aschen und Lapilli aus einem Schlot fast genau im Zentrum der Insel. Danach trat eine Pause ein. Da auf einigen Mauerstümpfen in Akrotiri Grasbüschel nachgewiesen wurden, wird über eine Ruhezeit von mehreren Monaten spekuliert.

Der erste Ausstoß von Bimsstein[Bearbeiten]

Die erste Phase des eigentlichen Ausbruchs bestand aus einer plinianischen Eruption von leichtem Bimsstein und Aschen. Die Ablagerung geschah mit ca. 3 cm/min, die maximale Dicke der Schicht beträgt 7 m. Wo sich die Aschen unter steilen Hängen sammelten, können 11 m erreicht werden. Der Ausstoß begann mit weißem Material und wechselte zu rosa, in das zunehmend Gesteinsbrocken in leuchtend gelben, orangen und roten Tönen eingelagert sind. Die Farben stammen von den zunehmenden Temperaturen des Gesteins beim Auftreffen am Boden beziehungsweise auf vorherigen Schichten.

Die Energie dieser Phase gilt als eher gering. Das Material wurde von vulkanischen Gasen ausgestoßen; anfangs war noch kein Wasser in den Schlot eingedrungen. Die Dauer dieser Phase wird auf zwischen einer und acht Stunden geschätzt. Erst in den obersten Lagen der ersten Phase mischen sich pyroklastische Ströme in die lockeren Ablagerungen. Die Lava hatte Kontakt zum Meerwasser bekommen.

Pyroklastische Ströme[Bearbeiten]

Als durch aufbrechende Risse im Gestein Meerwasser in den Vulkanschlot gelangen konnte und verdampfte, kam es zu einer phreatomagmatischen Explosion mit vervielfachter Energie des Ausbruchs. Der Vulkan konnte jetzt wesentlich schwereres Material ausstoßen, dessen Ablagerungen aber auch viel ungleichmäßiger verteilt sind.

Die zweite Phase begann mit der Eruption von runden Lapilli mit rund 10 mm Durchmesser, vermischt mit Aschen und wenigen größeren Brocken. Ablagerungen dieser Eruption erreichen eine Dicke von 5,90 m auf Thirasia im Westen und nur ca. 10 cm ganz im Osten der Insel. Darauf folgt eine Schicht von nur 1–18 cm weißer Asche und eine weitere dicke Lage zwischen 6 m im Westen und 15 cm im Osten und Südosten. Diese zweite Lage ist aus Lapilli mit eingelagerten vulkanischen Bomben zusammengesetzt, deren Größe von einigen Zentimetern bis zu Blöcken mit 5 m Durchmesser reicht. Die Blöcke bestehen überwiegend aus schwarzer, glatter Lava, die auch für frühere Vulkanausbrüche auf Santorin, etwa am Skaros-Felsen typisch war.

Die zweite Phase dauerte etwa eine Stunde. Der Vulkanschlot riss in südlicher Richtung auf, wie aus der Orientierung einiger Ablagerungen geschlossen werden kann.

Phreatomagmatische Ablagerungen[Bearbeiten]

In der dritten Phase des Ausbruchs fand der größte Ausstoß vulkanischen Materials statt. Die Pyroklastika flossen als kontinuierlicher Strom und rissen Gesteinsbrocken gewaltiger Größe mit. Die Blöcke erreichten in dieser Phase Durchmesser von 20 m, typisch sind 0,5–2 m. Sie bestehen aus porphyrischem Dazit und zum kleinen Teil aus mit Obsidian vergleichbarem Material.

Die Blöcke sind eingebettet in Ascheströme, Flüsse von Lapilli und gegen Ende auch Ströme von Schlamm aus Bimsstein mit hohem Wasseranteil. An einigen Stellen im Südosten der Insel erreichen die Ablagerungen der dritten Phase eine Dicke von 55 m.

Der Schlot verlagerte sich in dieser Phase wieder nach Norden. Das eindringende Seewasser vermischte sich mit dem vulkanischen Material und bildete nach einer Interpretation eine ungeheure Masse an Lahar genanntem, heißem Schlamm. Er soll die bis zu 400 m hohen Wände der Caldera überströmt haben.[13] Dabei wurde so viel Material ausgestoßen, dass der entstandene Hohlraum einstürzte und die Insel über ihm zusammenbrach. Dadurch bildete sich die Nordhälfte der heutigen Caldera. Auf der Außenseite der Insel flossen die vulkanischen Ströme ins Meer und erweiterten sie um flache Küstenebenen.

Ignimbrit, Lahar- und Schuttströme[Bearbeiten]

Mit der vierten Phase endete der Ausbruch. Sie ist vielgestaltig. Die Ablagerung von Ignimbrit-Schichten wechselte sich ab mit Lahar-Flüssen, Ascheströmen und gewaltigen Schuttmengen. Möglicherweise kam es dazwischen auch zum Ausstoß von Aschewolken. Die meisten Materialmengen flossen zu den Rändern der Insel ab: Während an der Caldera nur rund 1 m dicke Schichten der vierten Phase zugerechnet werden, bilden sie außen je nach Geländeprofil Schwemmfächer von bis zu 40 m Dicke.

Die Gesteinsbrocken der vierten Phase sind kleiner als zuvor, die maximale Größe übersteigt 2 m nicht mehr. Auch lässt sich nachweisen, dass an zwei Stellen im Süden Lahar-Ströme wieder in die Caldera zurückflossen. Die Energie der Eruption muss also deutlich abgenommen haben. McCoy/Heiken gehen davon aus, dass erst jetzt, ganz zum Ende des Ausbruchs, der Ring der Insel zusammenbrach, der nordwestliche Kanal zwischen der Hauptinsel und Thirasia entstand und das Gestein im Süden Thirasias einstürzte. Nur das Felseiland Aspronisi, Überrest einer früheren Eruption, blieb stehen.

Bedeutung und Datierung[Bearbeiten]

Die Ablagerung theräischer Tephra im nahezu gesamten östlichen Mittelmeer – von Nichoria in Messenien[14] über Anatolien[15] und das Schwarze Meer[16] bis zum Nildelta[17] – bietet einen einmaligen Fixpunkt für die Synchronisation verschiedener relativer Chronologien aus diesen Regionen. Gleichzeitig wird dadurch praktisch die gesamte absolute Chronologie der Späten Bronzezeit von der Datierung dieser Eruption abhängig, weshalb verständlicherweise die Frage nach der Datierung der Minoischen Eruption zu den am heftigsten umstrittenen in der heutigen archäologischen Forschung gehört. Insbesondere seit den 1980ern führten zahlreiche Untersuchungen mit verschiedensten Methoden im Wesentlichen zu einer Aufteilung der Meinungen in zwei Lager: auf der einen Seite die Vertreter der „späten Datierung“ (1530–1520 v. Chr.) und dementsprechend der „kurzen Chronologie“,[18] auf der anderen die der „frühen Datierung“ (1628–1620 v. Chr.) und der „langen Chronologie“.[19] Bemerkenswert ist zudem, dass die „Fronten“ nicht zwischen Natur- und Geisteswissenschaften, sondern quer durch alle Lager verlaufen. Die Debatte, die zum großen Teil in hochkarätigen Wissenschaftsmagazinen wie Nature und Science geführt wird, erfuhr bislang jedoch keine definitive Antwort.

Archäologisch-historiografische Methode[Bearbeiten]

Marinatos datierte die Minoische Eruption ursprünglich grob auf 1500 v. Chr. ± 50 Jahre, da er diesen Zeitraum auch für den Untergang der Minoer auf Kreta annahm.[1] Obwohl Ausgrabungen der folgenden Jahrzehnte zeigten, dass die minoische Kultur nicht plötzlich, sondern erst ab ca. 1450 v. Chr. in einen Zeitraum von wahrscheinlich mehreren Jahrzehnten unterging, erwies sich die Datierung der Minoischen Eruption an das Ende des 16. Jahrhunderts v. Chr. aus archäologischer Sicht als die wahrscheinlichste. Denn zwischenzeitlich wurden auf Kreta Funde gemacht (z.B. weiterentwickelte Vasenmalerei-Stile), die einerseits auf Santorin nicht mehr vorkommen, andererseits aber eindeutig vor dem Zusammenbruch der minoischen Kultur datieren.

Die relative Chronologie der minoischen Kultur, die bereits von Arthur Evans ausgearbeitet und seitdem immer weiter verfeinert wurde, wurde zuletzt u. a. 1989 von Peter Warren und Vronwy Hankey mit der recht gesicherten, absoluten Chronologie Ägyptens verknüpft.[18] Demnach steht die Phase „Mittelminoisch III“ (MM III) mit der Hyksoszeit, die Phase „Spätminoisch IA“ (SM IA) mit dem Ende der Zweiten Zwischenzeit und „Spätminoisch IB“ (SM IB) mit der Zeit von Hatschepsut und Thutmosis III. in Verbindung. Setzt man mit dieser Argumentation die Minoische Eruption etwa 30 Jahre vor Ende der Phase SM IA an, ergibt dies einen Zeitraum von 1530–1500 v. Chr.

Andere Archäologen bringen Argumente für eine frühe Datierung der Minoischen Eruption, etwa Wolf-Dietrich Niemeier, der Ausgräber des Palastes von Tell Kabri in Palästina, der darauf verweist, dass eine Türschwelle in dem 1600 v. Chr. zerstörten Gebäude völlig derjenigen entspricht, die in Akrotiri freigelegt wurde.[20] Ebenso wiesen die Wandmalereien deutliche stilistische Verbindungen zu den Fresken auf Thera auf.[21] Niemeier befürwortet daher die „lange Chronologie“ und eine Verschiebung des Endes von SM IA von 1500 auf 1600. In die gleiche Richtung deuten Ergebnisse der Ausgrabung am Tell el-cAjjul im Gazastreifen.[22] Da eine frühe Datierung aber zur Folge hätte, dass neben der minoischen auch die sichergeglaubte ägyptische Chronologie revidiert werden müsste – und damit alle davon abhängigen Chronologien im vorderen Orient und ganz Europa –, sprachen sich führende Ägyptologen und insbesondere Manfred Bietak entschieden dagegen aus.[23]

Ein minoisches Fresko aus Auaris, Ägypten. Durch derartige Funde ließ sich die archäologisch erstellte minoische Chronologie mit der absoluten Chronologie Ägyptens verknüpfen.

Eine besondere Rolle kommt dem als White Slip bezeichneten Keramikstil zu: Er wurde in relativ datierbaren Schichten gleichermaßen auf Santorin vor der Eruption, in Zypern und der Hyksos-Hauptstadt Auaris im heutigen Ägypten gefunden. Wenn es gelingt, die Stücke in eine chronologischen Reihe der Entwicklung zu ordnen, würden sie nicht nur die Synchronisation der Kulturräume ermöglichen, sondern auch die Frage der frühen oder späteren Datierung der Minoischen Eruption klären.[24]

Da sich in der Mitte des 2. Jahrtausends v. Chr. die politischen Verhältnisse in Ägypten und Mesopotamien im Umbruch befanden, gibt es kein eindeutiges schriftliches Zeugnis der Katastrophe, mit dem eine historiografische Datumsbestimmung möglich wäre. So bleibt eine ägyptische Inschrift, die sogenannte „Unwetter-Stele“ des Ahmose[25] umstritten. Diese – auch formal – höchst ungewöhnliche Schilderung einer Naturkatastrophe berichtet von ungeheurem Tosen und tagelanger Finsternis in ganz Ägypten, was sehr an typische Begleiterscheinungen eines schweren Vulkanausbruchs erinnert, z.B. des Krakatau-Ausbruchs von 1883. Der Zeitpunkt der Katastrophe liegt zwischen dem 11. und dem 22. Regierungsjahr des Ahmose, also 1539–1528 v. Chr. (nach Beckerath)[26] bzw. 1519–1508 v. Chr. (nach Schneider)[27].

Sollte das beschriebene „Unwetter“ durch die minoische Eruption ausgelöst worden sein, bietet sich hiermit eine Datierung aus historiografischer Sicht. Da jedoch bislang keine Tephraschichten der Minoischen Eruption während der Regierungszeit des Ahmose in Auaris oder anderen Orten Unterägyptens nachgewiesen wurde, kann jenes „Unwetter“ auch symbolisch als Zustand der Verwüstung in Ägypten nach Ende der Hyksoszeit interpretiert werden.[28]

Naturwissenschaftliche Methoden[Bearbeiten]

Die „klassische“ Datierung der Minoischen Eruption auf ca. 1500 v. Chr. wurde erstmals 1987 in Frage gestellt, als die damalige Auswertung von Eisbohrkernen aus Grönland die einzige größere Vulkaneruption der Mitte des 2. Jahrtausends v. Chr. auf ca. 1645 v. Chr. (± 20 Jahre) datierte.[29]

Die erhöhte Konzentration von Schwefelsäure, die in Schichten aus dieser Zeit gefunden wurde, konnte zwar nicht eindeutig mit Thera in Verbindung gebracht werden, wurde aber aufgrund der Vermutung, dass es im 2. Jahrtausend v. Chr. keine weitere große Eruption gegeben habe, als „most likely candidate for the Minoan eruption“ genommen.[29] Die Annahme, dass die Minoische Eruption groß genug war, um säurehaltige Rückstände sogar auf Grönland zu hinterlassen, basierte auf Marinatos' ursprünglicher Theorie eines mit Tambora vergleichbaren Ausbruchs.[1] Ein Ausbruch dieser Größe musste allerdings ebenso kurzfristige Veränderungen des Klimas nach sich ziehen, einen sogenannten vulkanischen Winter, wie es ihn auch beim größten bekannten Ausbruch in historischer Zeit – Tambora im Jahr 1815 – gegeben hatte (siehe Jahr ohne Sommer).

An den Jahresringen Langlebiger Kiefern lässt sich eine Klimaveränderung im 17. Jahrhundert v. Chr. nachweisen.

Bereits 1984 wurde bei der dendrochronologischen Untersuchung von Langlebigen Kiefern in den kalifornischen White Mountains (siehe Bristlecone-Pines-Chronologie)[30] ein ungewöhnlich schmaler Jahresring aus dem Jahr 1627 v. Chr. festgestellt, der auf einen extrem kalten Sommer deutete. Der Rückschluss, dass dies die Folge der minoischen Eruption gewesen sein könnte, wurde 1984 noch nicht gezogen. Dies geschah erst 1988 – vor dem Hintergrund der grönländischen Eisbohrkernanalyse, als bei einer Untersuchung irischer Eichen ebenfalls eine Abfolge ungewöhnlich schmaler Jahresringe beginnend 1628 v. Chr. festgestellt werden konnte.[31] Eine weitere Untersuchung im Jahr 1996 mit Holzproben aus Anatolien bestätigte die Klimaanomalie, dabei konnten zwei überdurchschnittlich breite Jahresringe auf ungewöhnlich milde und feuchte Sommer hinweisen.[32] Zuletzt wurde im Jahr 2000 bei einer Untersuchung mehrerer Kiefernstämme aus einem Torfmoor in Schweden ein weiterer Hinweis auf eine Klimaveränderung gefunden.[33]

Eine direkte Zuordnung der Klimaveränderung der 1620er Jahre v. Chr. zur Minoischen Eruption war mit den Erkenntnissen nicht möglich. Damit sind astronomische Veränderungen oder der Ausbruch eines anderen Vulkans als Verursacher der Jahresringanomalien und des Säurepeaks im Grönlandeis sehr viel wahrscheinlicher. So schlugen 1990 kanadische Forscher die Avellino-Eruption des Vesuv vor, die sie mittels Radiokohlenstoffdatierung (14C) auf 1660 v. Chr. (± 43 Jahre) datierten.[34] Ein Ausbruch des Mount St. Helens wurde ebenfalls in das 17. Jahrhundert v. Chr. datiert.[35]

1998 ergaben Untersuchungen, dass die 1987 in den Eisbohrkernen gefunden Partikel von vulkanischem Glas chemisch nicht zu dem Ausbruch auf Santorin passen.[36] 2004 wurden diese Partikel mit Hilfe neuerer Analysemethoden dem Ausbruch des Mount Aniakchak in Alaska zugeordnet.[37] Dem wurde seitdem widersprochen, die Verteilung von Elementen und Isotopen der Säurepeaks würde gut zu den Daten aus Santorin passen, die hohen Calcium-Werte in Tonscherben von Santorin müssten sich nicht zwingend auch in den Aschen im grönländischen Eis wiederfinden lassen, so dass es sich bei den Partikeln doch um Spuren der Minoischen Eruption handeln könnte.[38]

Fundposition des 2002 in der Bimsschicht auf Santorin entdeckten Olivenbaumastes

Einige neuere 14C-Datierungen sprechen wiederum für die Jahre 1620 bis 1600 v. Chr.: Die 2006 gelungene Radiokohlenstoffdatierung des Astes eines vom Vulkanauswurf begrabenen Olivenbaums auf Thera,[39] der im November 2002 in der Bimsschicht der Insel gefunden wurde,[40] ergab ein Alter von 1613 v. Chr. ± 13 Jahre.[41] Der Nachweis von Blättern zeigt, dass der Ast lebend durch den Ausbruch verschüttet wurde. Dabei wurden erstmals die einzelnen Jahresringe des Astes einzeln 14C-datiert und durch deren bekannte Zeitabstände die Konfidenzintervalle erheblich reduziert.[42] 2007 wurden ein weiteres Stück desselben Astes und ein zweiter, längerer und oberflächlich verkohlter Ast mit mehreren Seitenzweigen in nur neun Meter Entfernung vom ersten Fundort entdeckt, sie sind bisher nicht datiert.[43]

Die zeitliche Diskrepanz zwischen den Befunden im grönländischen Eis von 1645 v. Chr. zu den 14C-Daten von den 1620er Jahren könnte sich relativieren, wenn man neben die klassische 14C-Daten eine entsprechende Kurve des Beryllium-Isotops 10Be stellt und analysiert. Es ergab sich eine Zeitverschiebung um exakt 20 Jahre, womit die Säurepeaks im Eis in der Analyse wesentlich genauer zu den vermuteten Daten aus Santorin passen würden.[44]

2006 ergaben archäologische Funde von Tsunamiablagerungen bei Palaikastro auf Kreta mit erneut verfeinerten Methoden ein Alter von etwa 1650 ± 30 v. Chr. Die Ablagerungen des Tsunami enthalten Knochen von Nutztieren und Keramik zusammen mit vulkanischen Aschen des Ausbruchs und erlauben so die Anwendung und den Vergleich von drei verschiedenen Datierungsmethoden.[6]

Soziokulturelle Auswirkungen[Bearbeiten]

Es ist unklar, wie sich die Minoische Eruption direkt oder indirekt auf die Zivilisation der Minoer ausgewirkt hat, da sie weder schriftliche noch bildliche Darstellungen der Katastrophe hinterlassen haben. Die bereits erwähnten archäologischen Zeugnisse sprechen „nur“ gegen eine plötzliche Zerstörung der minoischen Kultur durch die Eruption, mehr können sie nicht aussagen. Da die Insel Santorin als südlichste Kykladeninsel als einzige innerhalb einer Tagesreise von Kreta aus zu erreichen war, war sie der zentrale Trittstein für den Handel der Minoer nach Norden.[45] Ein Netzwerkmodell des bronzezeitlichen Seehandels in der Ägäis lässt annehmen, dass die Vernichtung des Stützpunktes Akrotiri kurzfristig verstärkte Handelsanstrengungen über Alternativrouten ausgelöst hat. Langfristig hätte aber der erhöhte Aufwand den Fernhandel erheblich eingeschränkt, so dass der Niedergang der Minoer indirekt durch den Vulkanausbruch gefördert worden sein kann.[46]

Ebenso sind die Auswirkungen auf das griechische Festland unklar, da die Eruption von der mykenischen Kultur in den ab dem 15. Jahrhundert v. Chr. auftauchenden Linear B Tafeln nicht erwähnt wird. Bis auf die bereits genannte, umstrittene Stele des Pharao Ahmose[25] gibt es kein zeitgenössisches Zeugnis der Minoischen Eruption, das einen Rückschluss auf ihre Auswirkung erlaubt.

Unklar ist ebenfalls, ob die Minoische Eruption in später entstandenen Mythen reflektiert wurde. So wurden zahlreiche lokale, von Überschwemmungen berichtende Mythen sowie der Mythos der Deukalionflut als auf der Minoischen Eruption basierend ins Gespräch gebracht. In aller Regel wird der Kampf eines Gottes mit Poseidon berichtet, der das Land überflutet. Allerdings spricht keine dieser Mythen explizit von einem Vulkanausbruch. Daher kann nur über teils gewundene Interpretation sowie mit der Annahme einer katastrophalen Flut nach der Eruption mit Thera in Verbindung gebracht werden. Interessanterweise datiert die Parische Chronik die Deukalionische Flut ins Jahr 1529/1528 v. Chr. und liegt somit innerhalb der Zeitspanne der archäologisch-historiografischen Methode.[47]

Es wurde der in der Argonautensage vorkommende Talos als Reflexion der Minoischen Eruption gedeutet, ein bronzener Riese, der Kreta bewacht und feindliche Schiffe mit Felsbrocken bewirft.[48] Hennig geht davon aus, dass dieser Mythos in den Jahrzehnten unmittelbar vor der Eruption entstand, als der Inselvulkan mehr oder minder starke Tätigkeit zeigte.[49]

Auch die biblischen Zehn Plagen des 2. Buch Mose werden von verschiedenen Autoren mit der Minoischen Eruption in Verbindung gebracht.[50] Der griechische Seismologe Angelos Galanopoulos vermutete bereits in den 1960er Jahren die Eruption als Vorbild für den Untergang des Inselstaats Atlantis, den Platon in seinen Werken Timaios und Kritias beschrieben hat.[51]

Literatur[Bearbeiten]

  • Christos Doumas: The Minoan Eruption of the Santorini Volcano. In: Antiquity 48, 1974, ISSN 0003-598x, S. 110-115.
  • Walter Friedrich: Feuer im Meer. Der Santorin-Vulkan, seine Naturgeschichte und die Atlantis-Legende. 2. Auflage. Spektrum - Akademischer Verlag München, München 2005, ISBN 3-8274-1582-9.
  • Stefan Hiller: Die Explosion des Vulkans von Thera. In: Gymnasium 82, 1975, ISSN 0342-5231, S. 32–74.
  • Hans Lohmann: Die Santorin-Katastrophe. Ein archäologischer Mythos? In: Eckart Olshausen / Holger Sonnabend (Hrsg.): Naturkatastrophen in der antiken Welt. Steiner, Stuttgart 1998, ISBN 3-515-07252-7, (Geographica historica, 10 ISSN 1381-0472), (Stuttgarter Kolloquium zur Historischen Geographie des Altertums 6, 1996), S. 337-363.
  • Sturt W. Manning: A Test of Time. The Volcano of Thera and Chronology and History of the Aegean and East Mediterranean in the Mid Second Millennium B.C. Oxbow, Oxford 1999, ISBN 1-900188-99-6.
  • Floyd W. McCoy / Grant Heiken: The Late-Bronze Age explosive eruption of Thera (Santorini), Greece. Regional and local effects. In: Floyd W. McCoy / Grant Heiken (Hrsg.): Volcanic Hazards and Disasters in Human Antiquity. Geological Society of America, Boulder, Colo. 2000, ISBN 0-8137-2345-0, (Geological Society of America Special Papers 345, ISSN 0072-1077), S. 43-70, online (PDF; 3,21 MB).
  • Harald Meller, François Bertemes, Hans-Rudolf Bork, Roberto Risch (Hrsg.): 1600 – Kultureller Umbruch im Schatten des Thera-Ausbruchs? 1600 – Cultural change in the shadow of the Thera-Eruption? 4. Mitteldeutscher Archäologentag vom 14. bis 16. Oktober 2011 in Halle (Saale). 4th Archaeological Conference of Central Germany October 14–16, 2011 in Halle (Saale) (= Tagungen des Landesmuseums für Vorgeschichte Halle. Band 9). Landesamt für Denkmalpflege und Archäologie Sachsen-Anhalt und Landesmuseum für Vorgeschichte, Halle (Saale) 2013, ISBN 978-3-944507-00-2.

Weblinks[Bearbeiten]

Einzelnachweise[Bearbeiten]

  1. a b c d Spyridon Marinatos: The Volcanic Destruction of Minoan Crete, in: Antiquity 13, 1939, S. 425–439.
  2. a b Walter L. Friedrich: Feuer im Meer. Der Santorin-Vulkan, seine Naturgeschichte und die Atlantis-Legende. Spektrum Akademischer Verlag, Heidelberg 2004 (2. Aufl.). ISBN 3-8274-1582-9
  3. a b Floyd W. McCoy & Grant Heiken, The Late-Bronze Age explosive eruption of Thera (Santorini), Greece – Regional and local effects, in: Volcanic Hazards and Disasters in Human Antiquity, Special Paper 345 of the Geological Society of America, Boulder 2000, S. 43–70. ISBN 0-8137-2345-0
  4. Walter L. Friedrich: "Santorini - Volcano, Natural History, Mythology". Aarhus University Press 2009, ISBN 978-87-7934-505-8, S. 95.
  5. Lisa Leander: Tsunami-Spuren an Israels Küste. epoc-online vom 14. Oktober 2009.
  6. a b Hendrik J. Bruins, Johannes van der Pflicht, J. Alexander MacGillivray: The Minoan Santorini eruption and tsunami deposits in Palaikastro (Crete): Dating by geology, archaeology, 14C, and Egyptian chronology. In: Radiocarbon, Vol. 51, Nr. 2. Arizona Board of Regents on behalf on the University of Arizona, 2009, S. 397–411, abgerufen am 2. Mai 2011 (englisch).
  7. Christos Doumas et al.: Santorini tephra from Rhodes, in: Nature 287, 1980, S. 322-324. doi:10.1038/287322a0
  8. W. J. Eastwood et al.: The environmental impact of the Minoan eruption of Santorini (Thera): statistical analysis of palaeoecological data from Gölhisar, southwest Turkey, in: The Holocene 12, 2002, S. 431-444. doi:10.1191/0959683602hl557rp
  9. Floyd W. McCoy et al.: Modelling the Climatic Effects fo the LBA Eruption of Thera: New Calculations of Tephra Volumes May Suggest a Significantly Larger Eruption than Previously Reported, in: Proceedings of the Chapman Conference on Volcanism and the Earth’s Atmosphere, Am. Geophysical Union, Santorini, 2002, S. 21-22. (PDF)
  10. Haraldur Sigurdsson, Steven Carey: Thera 2006 Expedition Summary. Graduate School of Oceanography University of Rhode Island
  11. Die Darstellung des Ablaufs folgt McCoy/Heiken 2000, soweit keine anderen Quellen angegeben sind.
  12. Clairy Palyvou: Akrotiri Thera – an architecture of affluence 3500 years old, INSTAP Academic Press, Philadelphia 2005, S. 11. ISBN 1-931534-14-4
  13. R. S. J. Sparks & C. J. N. Wilson: The Minoan Deposits – A Review of Their Characteristics and Interpretation, in: D. A. Hardy (Hrsg.): Thera and the Aegean World III, London 1990.
  14. George Rapp et al.: Pumice from Thera (Santorini) Identified from a Greek Mainland Archeological Excavation, in: Science 179, 1973, S. 471-473. doi:10.1126/science.179.4072.471
  15. D. G. Sullivan: Minoan Tephra in Lake Sediments in Western Turkey, in: Thera and the Aegean world, 3,3. Chronology. Proceedings of the Third International Congress, Santorini, Greece, 3-9 September 1989, hrsg. v. D. A. Hardy, London 1990, S. 114-119. ISBN 0-9506133-6-3
  16. Frederic Guichard et al.: Tephra from the Minoan eruption of Santorini in sediments of the Black Sea, in: Nature 363, 1993, S. 610-612. doi:10.1038/363610a0
  17. Daniel J. Stanley et al.: Volcanic shards from Santorini (Upper Minoan ash) in the Nile Delta, Egypt, in: Nature 320, 1986, S. 733-735. doi:10.1038/320733a0
  18. a b Peter Warren & Vronwy Hankey: Aegean bronze age chronology, Bristol Classical Press, Bristol 1989. ISBN 0-906515-67-X
  19. Sturt W. Manning: The absolute chronology of the Aegean early Bronze Age. Archaeology, radiocarbon and history, Sheffield Academic Press, Sheffield 1995. ISBN 1-85075-336-9
  20. Wolf-Dietrich Niemeier: New Archaeological Evidence for a 17th century date of the 'Minoan Eruption' from Israel (Tel Kabri, Western Galilee), in: Thera and the Aegean world, 3,3. Chronology. Proceedings of the Third International Congress, Santorini, Greece, 3-9 September 1989, herausgegeben von D. A. Hardy, London 1990, S. 114-119. ISBN 0-9506133-6-3
  21. Wolf-Dietrich Niemeier: Tel Kabri: Aegean Fresco Paintings in a Canaanite Palace, in: Seymour Gittin (Hrsg.), Recent Excavations in Israel: A View to the West, Kendall, Dubuque 1995. ISBN 0-7872-0486-2
  22. Peter M. Fischer: The chronology of Tell el-cAjjul, Gaza – stratigraphy, Thera, pumice and radiocarbon dating. In: Jan Heinemeier, Walter Friedrich: Time's Up! − Dating the Minoan Eruption of Santorini, Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Bd. 10, Aarhus University Press, 2009, ISBN 978-87-7934-024-4, S. 253–265.
  23. Manfred Bietak (Hrsg.): Trade, Power and Cultural Exchange: Hyksos Egypt and the Eastern Mediterranean World 1800-1500 BC (= Ägypten und Levante 5), Österreichische Akademie der Wissenschaften, Wien 1995. ISBN 3-7001-2205-5
  24.  Sturt W. Manning: Clarifying the ‘High’ v. ‘Low’ Aegean/Cypriot Chronology for the Mid Second Millennium BC: Assessing the Evidence, Interpretive Frameworks, and Current State of the Debate. In: Manfred Bietak, Ernst Czerny (Hrsg.): The Synchronisation of Civilisations in the Eastern Mediterranean in the Second Millennium B.C. III. Proceedings of the SCIEM 2000 – 2nd EuroConference, Vienna, 28th of May – 1st of June 2003. Österreichische Akademie der Wissenschaften, Wien 2007, ISBN 978-3-7001-3527-2, S. 101–138 (PDF-Datei, 425,44 KB, Online, abgerufen am 2. April 2012).
  25. a b Karen Polinger Foster & Robert K. Ritner: „Text, storms and the Thera eruption“, in: Journal of Near Eastern Studies 55, 1996, S. 1-14.
  26. Jürgen von Beckerath: Chronologie des pharaonischen Ägypten. Die Zeitbestimmung der ägyptischen Geschichte von der Vorzeit bis 332 v. Chr., Verlag von Zabern, Mainz 1997. ISBN 3-8053-2310-7
  27. Thomas Schneider: Lexikon der Pharaonen, Artemis & Winkler, Düsseldorf 1997. ISBN 3-7608-1102-7
  28. Malcolm H. Wiener und James P. Allen: „Separate Lives: The Ahmose Tempest Stela and the Theran Eruption“, in: Journal of Near Eastern Studies 57, 1998, S. 1-28.
  29. a b Claus Hammer et al.: The Minoan eruption of Santorini in Greece dated to 1645 BC?, in: Nature 328, 1987, S. 517-519. doi:10.1038/328517a0
  30. Valmore C. LaMarche Jr. & Katherine K. Hirschboeck: Frost rings in trees as records of major volcanic eruptions, in: Nature 307, 1984, S. 121-126. doi:10.1038/307121a0
  31. M. G. L. Baillie & M. A. R. Munro: Irish tree rings, Santorini and volcanic dust veils, in: Nature 332, 1988, S. 344-346. doi:10.1038/332344a0
  32. Peter I. Kuniholm et al.: Anatolian tree rings and the absolute chronology of the eastern Mediterranean, 2220–718 BC, in: Nature 381, 1996, S. 780-783. doi:10.1038/381780a0
  33. Håkan Grudd et al.: Swedish tree rings provide new evidence in support of a major, widespread environmental disruption in 1628 BC, in: Geophysical Research Letters 27 (18), 2000, S. 2957–2960. doi:10.1029/1999GL010852
  34. J. S. Vogel et al.: Vesuvius/Avellino, one possible source of seventeenth century BC climatic disturbances, in: Nature 344, 1990, S. 534-537. doi:10.1038/344534a0
  35. B. H. Luckman et al.: Revised C-14 age for St Helens Y-tephra at Tonquin pass, British-Columbia, in: Canadian Journal of Earth Sciences 23, 1986, S. 734-736.
  36. Gregory A. Zielinski & Mark S. Germani: New ice-core evidence challenges the 1620s BC age for the Santorini (Minoan) eruption, in: Journal of Archaeological Science 25, 1998, S. 279-289.
  37. Nicholas J. G. Pearce et al.: Identification of Aniakchak (Alaska) tephra in Greenland ice core challenges the 1645 BC date for Minoan eruption of Santorini, in: Geochem. Geophys. Geosyst. 5, 2004. doi:10.1029/2003GC000672
  38. B. M. Vither et al.: Reply to comment by J. S. Denton and N.J. G. Pearce on “A synchronized dating of three Greenland ice cores throughout the Holocene”. In: Journal of Geophysical Research 113, 2008, D12306, zitiert nach: Raimund Muscheler: 14C and 10Be around 1650 cal BC. In: Jan Heinemeier, Walter Friedrich: Time's Up! − Dating the Minoan Eruption of Santorini, Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Bd. 10, Aarhus University Press, 2009, ISBN 978-87-7934-024-4, S. 275–284.
  39. Vorlage:Internetquelle/Wartung/Datum nicht im ISO-FormatNeu datiert – In der Zeitrechnung der Antike fehlen 100 Jahre. Wissenschaftler verlegen den Ausbruch von Santorin deutlich vor. Heidelberger Akademie der Wissenschaften, 27. April 2006, abgerufen am 2. Mai 2011.
  40.  Walter L. Friedrich: Feuer im Meer. Der Santorin-Vulkan, seine Naturgeschichte und die Atlantis-Legende. 2 Auflage. Spektrum Akademischer Verlag, München Oktober 2004, ISBN 3-8274-1582-9, S. 86.
  41. Friedrich W. L., Kromer B., Friedrich M., Heinemeier J., Pfeiffer T., Talamo S. (2006): Santorini eruption radiocarbon dated to 1627-1600 BC. In: Science 312 (5773), S 548-548; doi: 10.1126/science.1125087
  42. Zur Methode der Analyse einzelner Jahresringe und der Zusammenführung der Daten, sowie dem Ausschluss einer Kontamination mit geologisch altem CO2 vulkanischen Ursprungs siehe: Jan Heinemeier, Walter Friedrich, Bernd Kromer, Christopher Bronk Ramsey: The Minoaneruption of Santorini radiocarbon dated. In: Jan Heinemeier, Walter Friedrich: Time's Up! − Dating the Minoan Eruption of Santorini, Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Bd. 10, Aarhus University Press, 2009, ISBN 978-87-7934-024-4, S. 285–293.
  43. Walter Friedrich, Jan Heinemeier: The Minoan eruption of Santorini radiocarbon dated to 1613 ± 13 BC. In: Jan Heinemeier, Walter Friedrich: Time's Up! − Dating the Minoan Eruption of Santorini, Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Bd. 10, Aarhus University Press, 2009, ISBN 978-87-7934-024-4, S. 56–63.
  44. Raimund Muscheler: 14C and 10Be around 1650 cal BC. In: Jan Heinemeier, Walter Friedrich: Time's Up! − Dating the Minoan Eruption of Santorini, Acts of the Minoan Eruption Chronology Workshop, Sandbjerg November 2007. Monographs of the Danish Institute at Athens, Bd. 10, Aarhus University Press, 2009, ISBN 978-87-7934-024-4, S. 275–284.
  45. Carl Knappelt, Tim Evans, Ray Rivers: Modeling maritime interactions in the Aegean Bronze Age. In: Antiquity, 82, 318, 2008, S. 1009-1024, 1020.
  46. Carl Knappelt, Ray Rivers, Tim Evans: The Theran eruption and Minoan palatian collaps – new interpretations gained from modelling the maritime network. In: Antiquity, 85, 329, S. 1008–1023.
  47. Chronicon Parium, 4.Ashmolean Museum of Art and Archaeology: The Parian Marble: Translation
  48. J. Schoo: „Vulkanische und seismische Aktivität des ägäischen Meeresbeckens im Spiegel der griechischen Mythologie“, in: Mnemosyne Bd. 3/4, S. 257-294.
  49. R. Hennig: Altgriechische Sagengestalten als Personifikation von Erdfeuern und vulkanischen Vorgängen, in: Jahrbuch des Deutschen Archäologischen Instituts 54, 1939, S. 230-246.
  50. Barbara J. Sivertsen: The Parting of the Sea: How Volcanoes, Earthquakes, and Plagues Shaped the Story of Exodus. Princeton University Press, 2009, ISBN 978-0-691-13770-4 (online: Auszug zum Thema)
  51. Angelos G. Galanopoulos, Edward Bacon: Die Wahrheit über Atlantis, Heyne Verlag, München 1980. ISBN 3-453-00654-2 (siehe auch James W. Mavor Jr.: Das minoische Atlantis des Dr. Angelos Galanopulos)

36.34944444444425.399308333333Koordinaten: 36° 20′ 58″ N, 25° 23′ 57,5″ O

Dies ist ein als exzellent ausgezeichneter Artikel.
Dieser Artikel wurde am 10. März 2007 in dieser Version in die Liste der exzellenten Artikel aufgenommen.