Monomiale Matrix

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Eine monomiale Matrix oder verallgemeinerte Permutationsmatrix ist in der Mathematik eine quadratische Matrix, bei der in jeder Zeile und jeder Spalte genau ein Eintrag ungleich null ist. Monomiale Matrizen stellen damit eine Verallgemeinerung gewöhnlicher Permutationsmatrizen dar, bei denen genau ein Eintrag pro Zeile und Spalte gleich eins ist. Die regulären monomialen Matrizen bilden mit der Matrizenmultiplikation als Verknüpfung die monomiale Gruppe. Monomiale Matrizen werden unter anderem in der Geometrie, der Gruppentheorie und der Kodierungstheorie verwendet.

Definition[Bearbeiten | Quelltext bearbeiten]

Eine monomiale Matrix ist eine quadratische Matrix, bei der genau ein Eintrag pro Zeile und Spalte ungleich ist. Hierbei ist im Allgemeinen das Nullelement eines zugrunde liegenden Rings . Jede monomiale Matrix lässt sich als Produkt

  bzw.  

aus einer Permutationsmatrix und einer Diagonalmatrix darstellen.[1][2] Ist kommutativ, dann sind die beiden Darstellungen äquivalent: in der ersten Darstellung entsprechen die Diagonaleinträge von jeweils den Spalteneinträgen ungleich von , in der zweiten Darstellung jeweils den Zeileneinträgen ungleich ; die beiden Permutationsmatrizen stimmen überein.

Beispiel[Bearbeiten | Quelltext bearbeiten]

Ein Beispiel für eine ganzzahlige monomiale Matrix ist

,

denn es gilt

.

Spezialfälle[Bearbeiten | Quelltext bearbeiten]

Spezielle Klassen monomialer Matrizen sind:

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Anzahl[Bearbeiten | Quelltext bearbeiten]

Ist die Trägermenge des Rings endlich mit Elementen, dann beträgt die Anzahl verschiedener monomialer Matrizen der Größe

,

denn es gibt verschiedene Permutationsmatrizen der Größe und mögliche Wahlen für die Einträge ungleich null.

Produkt[Bearbeiten | Quelltext bearbeiten]

Das Produkt zweier monomialer Matrizen ist wieder eine monomiale Matrix, denn es gilt

,

wobei die Diagonalmatrix ist, die aus durch Zeilen- und Spaltenvertauschungen gemäß der zugrunde liegenden Permutation entsteht. Die Menge der monomialen Matrizen fester Größe bildet daher mit der Matrizenmultiplikation als Verknüpfung eine Halbgruppe.[3]

Inverse[Bearbeiten | Quelltext bearbeiten]

Eine monomiale Matrix ist genau dann invertierbar, wenn ihre Einträge ungleich null Einheiten (multiplikativ invertierbare Elemente) im Ring sind. Ist ein Körper oder Schiefkörper, dann sind alle Elemente ungleich null Einheiten und damit alle monomialen Matrizen invertierbar. Die inverse Matrix von ergibt sich zu

,

wobei die Permutationsmatrix der inversen Permutation und die Diagonalmatrix bestehend aus den multiplikativ Inversen der Diagonaleinträge von ist. Die regulären monomialen Matrizen bilden mit der Matrizenmultiplikation als Verknüpfung die monomiale Gruppe , eine Untergruppe der allgemeinen linearen Gruppe .

Determinante[Bearbeiten | Quelltext bearbeiten]

Die Determinante einer monomialen Matrix mit Einträgen aus einem kommutativen Ring ergibt sich nach dem Determinantenproduktsatz zu

,

wobei das Vorzeichen der zu zugehörigen Permutation ist und die Diagonalelemente von sind.

Reelle monomiale Matrizen[Bearbeiten | Quelltext bearbeiten]

Die Inverse einer reellen monomialen Matrix entsteht durch Transponierung und Bildung der Kehrwerte aller Einträge ungleich null, zum Beispiel

.

Die Inverse einer nichtnegativen monomialen Matrix ist demnach stets wieder nichtnegativ. Es gilt sogar die Umkehrung und eine reguläre nichtnegative Matrix, deren Inverse ebenfalls nichtnegativ ist, ist monomial.[4] Nachdem auch das Produkt zweier nichtnegativer monomialer Matrizen wieder nichtnegativ ist, bilden die nichtnegativen monomialen Matrizen eine Untergruppe der monomialen Gruppe.

Verwendung[Bearbeiten | Quelltext bearbeiten]

In der Geometrie besitzen monomiale Matrizen, deren Einträge ungleich null lediglich aus den Zahlen oder bestehen, eine besondere Bedeutung. Die Gruppe dieser vorzeichenbehafteten Permutationsmatrizen ist isomorph zur Hyperoktaedergruppe, der Symmetriegruppe eines Hyperwürfels oder Kreuzpolytops im -dimensionalen Raum.[5]

In der Gruppentheorie spielen monomiale Matrizen eine wichtige Rolle bei der monomialen Darstellung endlicher Gruppen.[6]

In der Kodierungstheorie heißen zwei lineare Codes zueinander äquivalent, wenn es eine monomiale Matrix gibt, die beide Codes ineinander überführt.[7]

Literatur[Bearbeiten | Quelltext bearbeiten]

  • Roger A. Horn, Charles R. Johnson: Matrix Analysis. Cambridge University Press, 2012, ISBN 978-0-521-83940-2.
  • Christian Voigt, Jürgen Adamy: Formelsammlung der Matrizenrechnung. Oldenbourg, 2007, ISBN 3-486-58350-6.

Weblinks[Bearbeiten | Quelltext bearbeiten]

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Christian Voigt, Jürgen Adamy: Formelsammlung der Matrizenrechnung. Oldenbourg Verlag, 2007, ISBN 3-486-58350-6, S. 85.
  2. Roger A. Horn, Charles Johnson: Matrix analysis. Cambridge University Press, 2013, ISBN 978-0-521-83940-2, S. 33.
  3. Jan Okniński: Semigroups of Matrices. World Scientific, 1998, ISBN 978-981-02-3445-4, S. 76.
  4. Tadeusz Kaczorek: Positive 1D and 2D Systems. Springer, 2012, ISBN 978-1-4471-0221-2, S. 1–2.
  5. Michael Field: Lectures on Bifurcations, Dynamics and Symmetry. CRC Press, 1996, ISBN 978-0-582-30346-1, S. 12–13.
  6. V. L. Popov: Monomial representation. In: Michiel Hazewinkel (Hrsg.): Encyclopaedia of Mathematics. Springer-Verlag, Berlin 2002, ISBN 1-4020-0609-8 (online).
  7. Wolfgang Willems: Codierungstheorie und Kryptographie. Springer, 2011, ISBN 978-3-7643-8612-2, S. 25.