Napoleon-Punkt

aus Wikipedia, der freien Enzyklopädie
Wechseln zu: Navigation, Suche

Die beiden Napoleon-Punkte, benannt nach dem französischen Feldherrn und Kaiser Napoléon Bonaparte, gehören zu den ausgezeichneten Punkten im Dreieck.

Der 1. Napoleon-Punkt ist folgendermaßen definiert:

Über den Seiten eines gegebenen Dreiecks werden nach außen drei gleichseitige Dreiecke gezeichnet. Verbindet man die Schwerpunkte dieser Dreiecke mit den gegenüberliegenden Ecken des ursprünglichen Dreiecks, so schneiden sich die Verbindungsgeraden in einem Punkt, dem 1. Napoleon-Punkt des gegebenen Dreiecks.

Napoleon-Punkt-1 005.svg

Zeichnet man die gleichseitigen Dreiecke jeweils auf die andere Seite, so erhält man entsprechend den 2. Napoleon-Punkt.

Die Verbindungslinien der drei Schwerpunkte bilden immer ein gleichseitiges Dreieck, unabhängig von der Länge der Grundseiten der Aufsetzdreiecke.

Eigenschaften[Bearbeiten | Quelltext bearbeiten]

Koordinaten[Bearbeiten | Quelltext bearbeiten]

Napoleon-Punkte ( und )
Trilineare Koordinaten
Baryzentrische Koordinaten

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Ausgezeichnete Punkte im Dreieck, Napoleon-Dreieck

Weblinks[Bearbeiten | Quelltext bearbeiten]