Nephron

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Feinbau der Niere, schematisch
Die Abbildung zeigt die verschiedenen Abschnitte des Tubulussystems. ACHTUNG: Die Macula densa liegt dem vas afferens und nicht wie im Bild dargestellt dem vas efferens an.[1]

Ein Nephron (von altgriechisch νεφρός nephros, deutsch ‚Niere‘) ist die funktionelle Untereinheit der Niere. Das Nephron gilt als kleinste Nierenfunktionseinheit. Es besteht aus:

Jede Niere des Menschen besitzt etwa eine Million dieser Untereinheiten. Die Tubuli arbeiten (trotz eines postulierten tubuloglomerulären Feedback) weitgehend unabhängig von den Glomeruli.[3]

Physiologie[Bearbeiten | Quelltext bearbeiten]

In den Nierenkörperchen wird kontinuierlich Primärharn aus dem Blut filtriert. Anschließend werden in den Tubuli bestimmte Stoffe resorbiert (vor allem wird Wasser „rückresorbiert“, reabsorbiert, Wasserreabsorption), aber auch sezerniert. Durch diese Konzentration entsteht aus dem Primärharn der eigentliche Harn (Sekundärharn oder Endharn). Die Primärharnbildung heißt auch glomeruläre Filtration, filtrative Nierenfunktion oder Kreatinin-Clearance; sie beträgt bei Erwachsenen etwa 150 Liter am Tag (oder 105 ml/min).

Die Tubuli regulieren den Wasserhaushalt, die Glomeruli filtern das Plasma jeweils proportional zum veränderlichen Herzzeitvolumen.

Die eigentliche Nierenleistung besteht im aktiven Transport[4][5] der Tubuli (unter Energieverbrauch) im Gegensatz zur hämodynamisch erzeugten (passiven) Filtration der Glomeruli.[6] Die aktiven Transportprozesse in den Nierenkanälchen werden eingeteilt in primär aktive, sekundär aktive und tertiär aktive.[7]

Geschichte[Bearbeiten | Quelltext bearbeiten]

Die Theorien der Harnbereitung[8] haben eine lange Geschichte.[9] Schon Leonhart Fuchs (1501–1566) beschrieb die Niere als Sieb oder Filter. Auch der österreichische Anatom Josef Hyrtl bezeichnete eine Niere als Seihe (seyhe) oder Sieb. William Bowman behauptete noch 1842, die glomerulären Kapillargefäße scheiden Wasser aus, welches die von den Tubuli sezernierten Stoffe wegspüle.[10][11] Klare Vorstellungen über die Arbeitsweise der Nieren bei der Harnbereitung hatte zuerst ebenfalls 1842 Carl Ludwig.[12] Nach seiner noch heute im Wesentlichen gültigen mechanischen Theorie findet die physikalische Filtration des Plasmas in den Glomeruli statt. Anschließend komme es zur Rückdiffusion von Wasser durch eine Endosmose im Tubulus.[13] Die tubuläre Resorbierung auch von harnpflichtigen Stoffen wurde erst 1917 von Arthur Robertson Cushny erkannt.[14] Heute spricht man von der (passiven, das heißt ohne Energieverbrauch) glomerulären Filtration und der (aktiven, das heißt mit Energieverbrauch) tubulären Rückresorption. Schon Franz Volhard hat diese "moderne mechanisch-physikalische Filtrationstheorie" abgelehnt,[15] obwohl er sie mehrfach ausführlich richtig beschrieb ("Filtrations-Rückresorptions-Theorie von Ludwig und Cushny").[16] Das (neurohumoral geregelte und medikamentös modulierte) Zusammenspiel von Physik und Chemie in den Podozyten und in den einzelnen Tubulusabschnitten in Bezug auf die einzelnen harnpflichtigen Substanzen ist jedoch auch heute noch nicht abschließend geklärt.

Hinweis[Bearbeiten | Quelltext bearbeiten]

Im Folgenden werden nur die Tubuli und ihre Funktion beschrieben. Die Glomeruli werden dagegen beim Stichwort Nierenkörperchen abgehandelt. Als Nephron wird die Einheit von Glomeruli und Tubuli bezeichnet. In den fremdsprachigen Wikipedia-Enzyklopädien finden sich dagegen Glomeruli und Tubuli gleichberechtigt beim Stichwort Nephron.

Überblick über das Tubulussystem[Bearbeiten | Quelltext bearbeiten]

Das Nierenkanälchen wird in Hauptstück (proximaler Tubulus), Überleitungsstück (Intermediärtubulus oder Tubulus attenuatus) und Mittelstück (distaler Tubulus) unterteilt. Die geraden Abschnitte der Nierenkanälchen und das Überleitungsstück bilden eine Schlinge, die als Henlesche Schleife (nach Jakob Henle, lat. Ansa nephroni) bezeichnet wird. Die Henleschen Schleifen existieren nur bei Säugetieren und Vögeln. Sie sind offensichtlich notwendig, um einen gegenüber dem Blut hyperosmotischen Harn zu bilden, denn Wirbeltiere ohne Henlesche Schleifen sind dazu nicht in der Lage.

Verbindungstubulus und Sammelrohr sind embryologisch anderer Herkunft und gehören deshalb nicht zum Nephron. Sie bilden aber eine funktionelle Einheit mit dem Tubulussystem des Nephrons. Der distale Tubulus ist distal im Hinblick auf das Nephron.

Bei der Nomenklatur des Tubulussystems können anatomische und physiologische Gesichtspunkte beachtet werden, was zu unterschiedlichen, aber sich ergänzenden Einteilungen führt.

Sowohl der proximale als auch der distale Tubulus werden jeweils in einen „aufgeknäuelten“ Teil, Pars convoluta oder Pars contorta, und einen „geraden“ Teil, Pars recta, eingeteilt. Die Partes rectae beider Tubuli und der Intermediärtubulus werden funktionell zur Henle-Schleife zusammengefasst. Die Pars recta des distalen Tubulus wird oft nur als dicker aufsteigender Teil der Henle-Schleife bezeichnet, während dann unter dem distalen Tubulus nur die Pars convoluta (auch als frühdistaler Tubulus bezeichnet) oder sogar (als spätdistaler Tubulus bezeichnet) der Verbindungstubulus und der Beginn des Sammelrohrs verstanden werden. Die Zuordnung des Verbindungstubulus zu Mittelstück oder Sammelrohr ist uneinheitlich. Hier wird es dem Sammelrohr zugeordnet.

Folgende Tabelle vergleicht deutsche Bezeichnungen, die Bezeichnungen nach den Nomina anatomica, weitere Einteilungen, internationale Abkürzungen und die anatomische Lage.

Anatomische Bezeichnung Weitere Bezeichnungen International Anatomische Lage Physiologie Histologie
Hauptstück Proximaler Tubulus, Pars convoluta Proximales Konvolut Proximal Convoluted Tubule (PCT) Rinde Resorption großer Mengen u. a. von Na+, Glukose, Bicarbonat und Aminosäuren durch Na+ gekoppelte Symporter (Glukose) bzw. Antiporter (Bicarbonat)

Resorption oder Sekretion u. a. von Harnsäure durch Anionentransporter mit Hilfe der proximalen Tubuluszellen

hoher Bürstensaum, deutliches Lumen, hohe Dichte an Mitochondrien
Proximaler Tubulus, Pars recta Henle-Schleife Proximal Straight Tubule (PST) Oberflächliche Nephrone: Markstrahlen

Mittlere Nephrone: Markstrahlen, Außenstreifen äußeres Mark Juxtamedulläre Nephrone: Außenstreifen äußeres Mark

Überleitungsstück Intermediärtubulus, Pars descendens Absteigender dünner Teil (Schenkel) der Henle-Schleife,
Pars descendens tubulus attenuatus
Descending Thin Limb (DTL) Oberflächliche Nephrone: Markstrahlen

Juxtamedulläre und mittlere Nephrone: Innenstreifen äußeres Mark, inneres Mark

Konzentrierung des Harns mithilfe des Gegenstromprinzips flaches Epithel
Intermediärtubulus, Pars ascendens Aufsteigender dünner Teil (Schenkel) der Henle-Schleife,
Pars ascendens tubulus attenuatus
Ascending Thin Limb (ATL) Inneres Mark, nur bei juxtamedullären Nephronen vorhanden Konzentrierung des Harns mithilfe des Gegenstromprinzips
Mittelstück Distaler Tubulus, Pars recta Dicker aufsteigender Teil (Schenkel) der Henle-Schleife Thick Ascending Limb (TAL) Oberflächliche Nephrone: Markstrahlen, Übergang Rinde

Juxtamedulläre und mittlere Nephrone: Äußeres Mark, Übergang Rinde

Konzentrierung des Harns mithilfe des Gegenstromprinzips kubisches, einheitliches Epithel, runde Zellkerne, große Mitochondrien
Distaler Tubulus, Pars convoluta Distales Konvolut,
frühdistaler Tubulus
Distales Nephron Distal Convoluted Tubule (DCT) Rinde Aldosteron-abhängige Konzentrierung des Harns,
enthält die Macula densa
Sammelrohr Verbindungstubulus spätdistaler Tubulus, Tubulus reuniens Connecting Tubule (CNT) Rinde, Übergang Markstrahlen Konzentrierung des Harns durch Wasserentzug, ADH-abhängig kubisch bis prismatische Zellen, Schaltzellen und Hauptzellen, heterogen, großes Lumen
Sammelrohr Collecting Duct (CD) Beginn oben in Markstrahlen, verläuft durchs ganze Mark bis zur Papille Konzentrierung des Harns durch Wasserentzug, ADH-abhängig

Hauptstück[Bearbeiten | Quelltext bearbeiten]

Lichtmikroskopische Aufnahme der Nierenrinde. 1 Nierenkörperchen, 2 Hauptstück, 3 Mittelstück

Das Hauptstück (Tubulus proximalis) verläuft zunächst geschlängelt (Tubulus contortus proximalis) und dann gerade (Tubulus rectus proximalis) in das Nierenmark.

Hier werden die im Primärharn enthaltenen wertvollen Verbindungen (z. B. Glucose, Aminosäuren, Elektrolyte) zurückgewonnen. Außerdem werden hier einige Schadstoffe aktiv abgegeben.

Überleitungsstück[Bearbeiten | Quelltext bearbeiten]

Das Überleitungsstück (Tubulus attenuatus) zieht zunächst weiter in Richtung Nierenmark und biegt dann wieder in Richtung Rinde um. Hier wird dem Harn vor allem Wasser entzogen.

Mittelstück[Bearbeiten | Quelltext bearbeiten]

Das Mittelstück (Tubulus distalis) beginnt noch im Nierenmark und zieht zunächst als gerades Röhrchen (Tubulus rectus distalis) in die Nierenrinde. Hier schließt sich wiederum ein gewundener Abschnitt (Tubulus contortus distalis) an, der in ein Sammelrohr mündet.

Im distalen Tubulus wird dem Harn NaCl entzogen und ins Nierenmark abgegeben, wo das NaCl über die Kapillaren wieder in den Blutkreislauf gelangt. Hier findet ein aktiver Transport über Ionenkanäle statt: Na+ wird aktiv heraustransportiert, Cl wandert passiv nach.

Funktion der Tubuli[Bearbeiten | Quelltext bearbeiten]

Die Hauptaufgabe der Tubuli ist die Rückresorption fast des gesamten Primärharns in den Blutkreislauf. Insofern ist die Tubulusfunktion als Differenz von Primärharn und Sekundärharn zu verstehen. Diese Subtraktion gilt nicht nur für Wasser, sondern auch für alle gelösten harnpflichtigen Substanzen. So ist für jeden beliebigen Zeitraum die tubuläre Rückresorption von Wasser (Volumen pro Zeiteinheit) gleich der Differenz aus GFR und Harnfluss. Ebenso ist die Masse der durch den Urin ausgeschiedenen Substanzen gleich der Differenz aus filtrierter und resorbierter Masse der betreffenden Substanz.[17]

Diese Differenzen werden nur durch die Neubildung von harnpflichtigen Stoffen in den Tubuli und durch die tubuläre Sekretion von harnpflichtigen Substanzen in den Sekundärharn (meistens nur sehr geringfügig) verfälscht. Diese beiden Mechanismen sind jedoch regelmäßig zu vernachlässigen.

Oligurie und Anurie sind also keine Hinweise auf krankhafte Störungen von Glomeruli oder Tubuli. Dagegen könnte eine Polyurie ein Symptom einer Diuretika-Therapie, einer Polydipsie oder einer seltenen Tubuluskrankheit sein.

Je intensiver die tubuläre Rückresorption, desto ungenauer wird die Bestimmung von glomerulärer Filtrationsrate und Kreatinin-Clearance. Denn alle Vergrößerungen der tubulären Rückresorptionsquote verändern die Konzentrationen der harnpflichtigen Stoffe im Blut und im Urin.

Tubuluskrankheiten[Bearbeiten | Quelltext bearbeiten]

Alle Diuretika verkleinern die tubuläre Rückresorptionsquote (Tubulusblockade) und vergrößern so den Sekundärharnfluss mit der Folge einer Polyurie.[18] Bei einer Polyurie ist auch mit einer Nykturie und einer Polydipsie zu rechnen.[19] Tubuluskrankheiten (Tubulusatrophie, Tubulitis,[20] Tubulusnekrosen,[21] Tubulorhexis,[22] Tubulopathien,[23] Tubulonephrosen, "schwere Läsionen der Tubulusepithelien",[24] Rückresorptionsschädigungen[25]) würden den aktiven Transport bei der Rückresorption verkleinern und deshalb wie Diuretika wirken.

Tatsächliche Tubulopathien mit diuretischer Wirkung sind sehr selten. Beispiele sind der (nephrogene) Diabetes insipidus renalis[26] als Spezialfall des Diabetes insipidus und das renale Fanconi-Syndrom. Bei der hereditären Hartnup-Krankheit, beim Lowe-Syndrom und beim Gitelman-Syndrom kommt es dagegen nicht zur Polyurie.

Noch seltener sind isolierte Tubuluskrankheiten mit vergrößerter Rückresorptionsquote und infolgedessen mit dem Symptom einer tendenziellen Anurie. Hier ist das Liddle-Syndrom ein Beispiel.[27] Man spricht hier von einer krankhaften Funktionsverbesserung (gain of function).

Die tubulointerstitielle Nephritis ist nur in seltenen Fällen so ausgeprägt, dass es zu einer Polyurie kommt. "Andererseits führen toxische reine tubuläre Schädigungen ohne gleichzeitige Beeinträchtigung der Nierendurchblutung nicht zur Insuffizienz oder Anurie."[28] Auch bei tubulointerstitiellen Zellschädigungen im Rahmen einer chronischen Niereninsuffizienz kommt es nicht zur Polyurie.[29] Eine akute tubuläre Nekrose (veralteter Begriff)[30] als unerwünschte Medikamentennebenwirkung führt regelmäßig nicht zu einer Polyurie.[31][32]

Literatur[Bearbeiten | Quelltext bearbeiten]

Siehe auch[Bearbeiten | Quelltext bearbeiten]

Weblinks[Bearbeiten | Quelltext bearbeiten]

Commons: Nephron – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Nephron – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise[Bearbeiten | Quelltext bearbeiten]

  1. Robert Franz Schmidt, Florian Lang, Manfred Heckmann: Physiologie des Menschen: mit Pathophysiologie; mit 85 Tabellen; mit herausnehmbarem Repetitorium. 31., überarb. und aktualisierte Auflage. Springer-Medizin-Verlag, Heidelberg 2010, ISBN 978-3-642-01650-9.
  2. Karl Julius Ullrich, Klaus Hierholzer (Hrsg.): Normale und pathologische Funktionen des Nierentubulus. Verlag Hans Huber, Bern 1965, 466 Seiten.
  3. K. H. Gertz: Die Anpassung der transtubulären Resorption an die glomeruläre Filtrationsrate. In: Karl Julius Ullrich, Klaus Hierholzer (Hrsg.): Normale und pathologische Funktionen des Nierentubulus. Verlag Hans Huber, Bern 1965, S. 141–145.
  4. Heinz Valtin: Funktion der Niere. 1. Auflage, Schattauer Verlag, Stuttgart / New York 1978, ISBN 3-7945-0556-5, S. 35; Zitat: „die Resorption muß wenigstens teilweise aktiv sein“.
  5. Anderer Ansicht („Die tubuläre Rückresorption ist ein passiver Mechanismus, der die gesamte Tubuluslänge betrifft.“), wenn auch ohne Begründung, sind Markus Daschner und P. Cochat: Pharmakotherapie bei Niereninsuffizienz. In: Karl Schärer, Otto Mehls (Hrsg.): Pädiatrische Nephrologie. Springer-Verlag, Berlin, Heidelberg 2002, ISBN 978-3-642-62621-0, S. 467.
  6. E. P. Leumann: Nierenfunktionsprüfungen. In: Karl Schärer, Otto Mehls (Hrsg.): Pädiatrische Nephrologie. Springer-Verlag, Berlin, Heidelberg 2002, ISBN 978-3-642-62621-0, S. 22.
  7. Claas Wesseler: Physiologie, Band 1, 3. Auflage, Medi-Learn, Marburg 2009, ISBN 978-3-938802-58-8, S. 3–7.
  8. So die Kapitelüberschrift im Inhaltsverzeichnis auf Seite 1 in: Franz Volhard: Die doppelseitigen hämatogenen Nierenerkrankungen. In: Gustav von Bergmann, Rudolf Staehelin (Hrsg.): Handbuch der Inneren Medizin, 2. Auflage, Verlag von Julius Springer, Berlin / Heidelberg 1931, Band 6, erster Teil, Seiten V und 1.
  9. Johanna Bleker: Die Geschichte der Nierenkrankheiten. Boehringer Mannheim 1972.
  10. Heinz Valtin: Funktion der Niere. 1. Auflage, Schattauer Verlag, Stuttgart / New York 1978, ISBN 3-7945-0556-5, S. 6.
  11. William Bowman: On the structure and use of the malpighian bodies of the kidney, and observations on the circulation through that gland. Philosophical Transactions of the Royal Society, London, 132: S. 57 (1842).
  12. Carl Ludwig: Nieren und Harnbereitung. In: Rudolf Wagner (Hrsg.): Handwörterbuch der Physiologie mit Rücksicht auf physiologische Pathologie. Vieweg, Braunschweig 1844.
  13. H. Straub, K. Beckmann: Allgemeine Pathologie des Wasser- und Salzstoffwechsels und der Harnbereitung. In: Lehrbuch der inneren Medizin. 4. Auflage, 2. Band, Verlag von Julius Springer, Berlin 1939, S. 8.
  14. Arthur Robertson Cushny: The Secretion of Urine. Longmans, Green and Company, London 1917.
  15. W. Kaiser: Die halleschen Ordinationsjahre von Franz Volhard (1872-1950). In: Hans Erhard Bock, Karl-Heinz Hildebrand, Hans Joachim Sarre (Hrsg.): Franz Volhard – Erinnerungen. Schattauer Verlag, Stuttgart 1982, ISBN 3-7845-0898-X, S. 212.
  16. Franz Volhard: Die doppelseitigen hämatogenen Nierenerkrankungen. In: Gustav von Bergmann, Rudolf Staehelin (Hrsg.): Handbuch der Inneren Medizin, 2. Auflage, Verlag von Julius Springer, Berlin / Heidelberg 1931, Band 6, erster Teil, Seiten 18 und 21.
  17. Heinz Valtin: Funktion der Niere. 1. Auflage, Schattauer Verlag, Stuttgart / New York 1978, ISBN 3-7945-0556-5, S. 36.
  18. Karl Klütsch, Ernst Wollheim, Hans-Jürgen Holtmeier (Hrsg.): Die Niere im Kreislauf, Georg Thieme Verlag, Stuttgart 1971, ISBN 3-13-468201-X, S. 148.
  19. Siegfried Waldegger, Martin Konrad: Tubuläre Erkrankungen (Tubulopathien). In: Jörg Dötsch, Lutz T. Weber (Hrsg.): Nierenerkrankungen im Kindes- und Jugendalter. Springer-Verlag, Berlin 2017, ISBN 978-3-662-48788-4, S. 133.
  20. Ulrich Kunzendorf: Nierentransplantation. In: Ulrich Kuhlmann, Joachim Böhler, Friedrich C. Luft, Mark Dominik Alscher, Ulrich Kunzendorf (Hrsg.): Nephrologie. 6. Auflage. Georg Thieme Verlag, Stuttgart, New York 2015, ISBN 978-3-13-700206-2, S. 776.
  21. Der Begriff der akuten Tubulusnekrose gilt mittlerweile als obsolet. Siehe akutes Nierenversagen.
  22. Hans Joachim Sarre: Nierenkrankheiten. 4. Auflage, Georg Thieme Verlag, Stuttgart 1976, ISBN 3-13-392804-X, S. 428.
  23. Karl Schärer, M. Konrad, W. Rascher, G. Reusz, Otto Mehls: Hereditäre Tubulopathien. In: Karl Schärer, Otto Mehls (Hrsg.): Pädiatrische Nephrologie. Springer-Verlag, Berlin, Heidelberg 2002, ISBN 978-3-642-62621-0, S. 119–148.
  24. O. Spühler: Die interstitiellen Nephritiden und die Bedeutung Franz Volhards für deren Lehre. In: Hans Erhard Bock, Karl-Heinz Hildebrand, Hans Joachim Sarre (Hrsg.): Franz Volhard – Erinnerungen. Schattauer Verlag, Stuttgart 1982, ISBN 3-7845-0898-X, S. 169.
  25. Franz Volhard: Die doppelseitigen hämatogenen Nierenerkrankungen. In: Gustav von Bergmann, Rudolf Staehelin (Hrsg.): Handbuch der Inneren Medizin. 2. Auflage, Springer-Verlag, Berlin, Heidelberg 1931, Band 6, ISBN 978-3-662-42701-9 (Nachdruck), S. 270.
  26. Hans Joachim Sarre: Nierenkrankheiten. 4. Auflage, Georg Thieme Verlag, Stuttgart 1976, ISBN 3-13-392804-X, S. 532 f.
  27. Claas Wesseler: Physiologie, Band 1, 3. Auflage, Medi-Learn, Marburg 2009, ISBN 978-3-938802-58-8, S. 32.
  28. O. Spühler: Die interstitiellen Nephritiden und die Bedeutung Franz Volhards für deren Lehre. In: Hans Erhard Bock, Karl-Heinz Hildebrand, Hans Joachim Sarre (Hrsg.): Franz Volhard – Erinnerungen. Schattauer Verlag, Stuttgart 1982, ISBN 3-7845-0898-X, S. 169.
  29. Otto Mehls, Karl Schärer: Chronische Niereninsuffizienz. In: Karl Schärer, Otto Mehls (Hrsg.): Pädiatrische Nephrologie. Springer-Verlag, Berlin, Heidelberg 2002, ISBN 978-3-642-62621-0, S. 375.
  30. Diese Bezeichnung gilt mittlerweile als veraltet. Siehe akutes Nierenversagen.
  31. P. Cochat, Markus Daschner: Nephrotoxizität von Medikamenten. In: Karl Schärer, Otto Mehls (Hrsg.): Pädiatrische Nephrologie. Springer-Verlag, Berlin, Heidelberg 2002, ISBN 978-3-642-62621-0, S. 484.
  32. C. Machleidt, Ulrich Kuhlmann: Interstitielle Nephropathien. In: Ulrich Kuhlmann, Joachim Böhler, Friedrich C. Luft, Mark Dominik Alscher, Ulrich Kunzendorf (Hrsg.): Nephrologie. 6. Auflage. Georg Thieme Verlag, Stuttgart, New York 2015, ISBN 978-3-13-700206-2, S. 512–515.